283 resultados para p16 540C>T
Resumo:
Vols. for 1911/13- issued as the Ministry's Publicaciones históricas
Resumo:
Conventional chemotherapeutic drugs target proliferating cells, relying on often small differences in drug sensitivity of tumour cells compared to normal tissue to deliver a therapeutic benefit. Consequently, they have significant limiting toxicities and greatly reduced efficacy against nonproliferating compared to rapidly proliferating tumour cells. This lack of selectivity and inability to kill nonproliferating cells that exist in tumours with a low mitotic index are major failings of these drugs. A relatively new class of anticancer drugs, the histone deacetylase inhibitors (HDI), are selectively cytotoxic, killing tumour and immortalized cells but normal tissue appears resistant. Treatment of tumour cells with these drugs causes both G1 phase cell cycle arrest correlated with increase p21 expression, and cell death, but even the G1 arrested cells died although the onset of death was delayed. We have extended these observations using cells that were stably arrested by either serum starvation or expression of the cyclin-dependent kinase inhibitor p16(ink4a). We report that histone deacetylase inhibitors have similar cytotoxicity towards both proliferating and arrested tumour and immortalized cells, although the onset of apoptosis is delayed by 24 h in the arrested cells. Both proliferating and arrested normal cells are unaffected by HDI treatment. Thus, the histone deacetylase inhibitors are a class of anticancer drugs that have the desirable features of being tumour-selective cytotoxic drugs that are equally effective in killing proliferating and nonproliferating tumour cells and immortalized cells. These drugs have enormous potential for the treatment of not only rapidly proliferating tumours, but tumours with a low mitotic index.
Resumo:
Head and neck cancer (HNSCC) is one of the most distressing human cancers, causing pain and affecting the basic survival functions of breathing and swallowing. Mortality rates have not changed despite recent advances in radiotherapy and surgical treatment. We have compared the expression of over 13,000 unique genes in 7 cases of matched HNSCC and normal oral mucosa. Of the 1,260 genes that showed statistically significant differences in expression between normal and tumor tissue at the mRNA level, the three top ranking of the top 5% were selected for further analysis by immunohistochemistry on paraffin sections,. along with the tumor suppressor genes p16 and p53, in a total of 62 patients including 55 for whom >4-year clinical data was available. Using univariate and multivariate survival analysis, we identified SPARC/osteonectin as a powerful independent prognostic marker for short disease-free interval (DFI) (p < 0.002) and poor overall survival (OS) (p = 0.018) of HNSCC patients. In combination with other ECM proteins found in our analysis, PAI-1 and uPA, the association with DFI and OS became even more significant (p < 0.001). Our study represents the first instance of SPARC as an independent prognostic marker in HNSCC.
Resumo:
Human melanoma susceptibility is often characterized by germ-line inactivating CDKN2A (INK4A/ARF) mutations, or mutations that activate CDK4 by preventing its binding to and inhibition by INK4A. We have previously shown that a single neonatal UV radiation (UVR) dose delivered to mice that carry melanocyte-specific activation of Hras (TPras) increases melanoma penetrance from 0% to 57%. Here, we report that activated Cdk4 cooperates with activated Hras to enhance susceptibility to melanoma in mice. Whereas UVR treatment failed to induce melanomas in Cdk4(R24C/R24C) mice, it greatly increased the penetrance and decreased the age of onset of melanoma development in Cdk4(R24C/R24C)/TPras animals compared with TPras alone. This increased penetrance was dependent on the threshold of Cdk4 activation as Cdk4(R24C/+)/TPras animals did not show an increase in UVR-induced melanoma penetrance compared with TPras alone. In addition, Cdk4(R24C/R24C)/TPras mice invariably developed multiple lesions, which occurred rarely in TPras mice. These results indicate that germ-line defects abrogating the pRb pathway may enhance UVR-induced melanoma. TPras and Cdk4(R24C/R24C)/TPras tumors were comparable histopathologically but the latter were larger and more aggressive and cultured cells derived from such melanomas were also larger and had higher levels of nuclear atypia. Moreover, the melanomas in Cdk4(R24C/R24C)/TPras mice, but not in TPras mice, readily metastasized to regional lymph nodes. Thus, it seems that in the mouse, Hras activation initiates UVR-induced melanoma development whereas the cell cycle defect introduced by mutant Cdk4 contributes to tumor progression, producing more aggressive, metastatic tumors.
Resumo:
BackgroundThe recurrent immunoglobulin translocation, t(4;14)(p16;q32) occurs in 15% of multiple myeloma patients and is associated with poor prognosis, through an unknown mechanism. The t(4;14) up-regulates fibroblast growth factor receptor 3 (FGFR3) and multiple myeloma SET domain (MMSET) genes. The involvement of MMSET in the pathogenesis of t(4;14) multiple myeloma and the mechanism or genes deregulated by MMSET upregulation are still unclear.Design and MethodsThe expression of MMSET was analyzed using a novel antibody. The involvement of MMSET in t(4;14) myelomagenesis was assessed by small interfering RNA mediated knockdown combined with several biological assays. In addition, the differential gene expression of MMSET-induced knockdown was analyzed with expression microarrays. MMSET gene targets in primary patient material was analyzed by expression microarrays.ResultsWe found that MMSET isoforms are expressed in multiple myeloma cell lines, being exclusively up-regulated in t(4;14)-positive cells. Suppression of MMSET expression affected cell proliferation by both decreasing cell viability and cell cycle progression of cells with the t(4;14) translocation. These findings were associated with reduced expression of genes involved in the regulation of cell cycle progression (e.g. CCND2, CCNG1, BRCA1, AURKA and CHEK1), apoptosis (CASP1, CASP4 and FOXO3A) and cell adhesion (ADAM9 and DSG2). Furthermore, we identified genes involved in the latter processes that were differentially expressed in t(4;14) multiple myeloma patient samples.ConclusionsIn conclusion, dysregulation of MMSET affects the expression of several genes involved in the regulation of cell cycle progression, cell adhesion and survival.
Resumo:
Purpose: Our purpose in this report was to define genes and pathways dysregulated as a consequence of the t(4;14) in myeloma, and to gain insight into the downstream functional effects that may explain the different prognosis of this subgroup.Experimental Design: Fibroblast growth factor receptor 3 (FGFR3) overexpression, the presence of immunoglobulin heavy chain-multiple myeloma SET domain (IgH-MMSET) fusion products and the identification of t(4;14) breakpoints were determined in a series of myeloma cases. Differentially expressed genes were identified between cases with (n = 55) and without (n = 24) a t(4;14) by using global gene expression analysis.Results: Cases with a t(4;14) have a distinct expression pattern compared with other cases of myeloma. A total of 127 genes were identified as being differentially expressed including MMSET and cyclin D2, which have been previously reported as being associated with this translocation. Other important functional classes of genes include cell signaling, apoptosis and related genes, oncogenes, chromatin structure, and DNA repair genes. Interestingly, 25% of myeloma cases lacking evidence of this translocation had up-regulation of the MMSET transcript to the same level as cases with a translocation.Conclusions: t(4;14) cases form a distinct subgroup of myeloma cases with a unique gene signature that may account for their poor prognosis. A number of non-t(4;14) cases also express MMSET consistent with this gene playing a role in myeloma pathogenesis.
Resumo:
Fondo Margaritainés Restrepo
Resumo:
Dissertação de Mestrado, Engenharia Biológica, , 2016
Resumo:
Numerosos estudios mencionan que la sobreexpresión de la proteína p16, un marcador biológico que permite identificar lesiones preneoplásicas del epitelio exocervical, tendría una alta asociación con el Papiloma Virus Humano (HPV) de alto riesgo oncogénico. Es un estudio descriptivo correlacional cuyo objetivo fue establecer asociación de las Neoplasias Intraepiteliales Cervicales grado I (NIC I), HPV positivos, con la expresión del p16. Materiales, métodos y resultados: Es un estudio correlacional que se realizó en el período de noviembre de 2009 a noviembre de 2010; se presentaron 256 casos de NIC I de los cuales, 72 fueron HPV positivos; se practicó técnica de p16. La edad promedio de las mujeres fue de 41 años. Se encontró positividad para el p16 en 40 casos (55.6%) y fueron negativos 32 (44.4%). De los casos positivos para p16, los tipos virales más frecuentes fueron los de alto riesgo: 33 (82.5%). El p16 fue valorado en cuantía, distribución e intensidad, estableciéndose relación entre la intensidad del p16 con los virus de alto riesgo (p=0.038). Cuando se analizó la edad y el tipo viral, pacientes entre 20 y 40 años (36 casos, 90%) presentaron genoma de HPV de alto riesgo. Conclusiones: Existió correlación entre la intensidad del p16 con la presencia de HPV de alto riesgo, ayudando a seleccionar grupos con tendencia a la progresión de la enfermedad.
Resumo:
The aims of this study were to (1) evaluate cellular senescence in chondrocytes from osteoarthritic articular cartilage, (2) investigate the hypothesis that oxidative stress is a feature of canine OA chondrocytes and that oxidative stress contributes to cellular senescence in canine chondrocytes, (3) investigate the hypothesis that osteoarthritic chondrocytes alter the gene expression of adjacent normal chondrocytes in OA joints leading to modulation of genes known to play a role in the pathogenesis of OA and (4) evaluate the presentation of dogs undergoing femoral head excision in veterinary referral practice in the UK as a treatment for osteoarthritis of the coxofemoral joint, and to categorise the distribution and severity of associated pathological lesions. Chondrocytes from osteoarthritic and normal cartilage were examined for levels of senescence. Initially chondrocytes were cultured using an alginate bead culture system, thought to mimic the extracellular matrix of articular cartilage. However, these chondrocytes showed almost no growth as compared to monolayer culture where they grew rapidly. OA chondrocytes entered the senescent state after 1.5 to 4.9 population doublings in monolayer culture, while normal chondrocytes underwent 4.8 to 14.6 population doublings before entering the senescent state. Osteoarthritic chondrocytes had increased levels of markers of cellular senescence (senescence associated beta-galactosidase accumulation and p16 protein accumulation) as compared to normal chondrocytes, suggesting that chondrocyte senescence is a feature of canine osteoarthritis. An experimental model for the induction of oxidative stress in chondrocyte cell culture was developed using tert-Butyl hydroperoxide and total cellular glutathione was measured as an indicator of cellular oxidative stress levels. Experimental induction of oxidative stress in both normal and osteoarthritic chondrocytes in cell culture resulted in increased amounts of cellular senescence, shown by an increase in levels of senescence associated beta-galactosidase accumulation and decreased replicative capacity. Experimental induction of oxidative stress also resulted in altered gene expression of three genes important to the degradation of the extracellular matrix; MMP-13, MMP-3 and Col-3A1, measured by RT-PCR, in normal canine chondrocytes in monolayer cell culture. MMP-3 showed the greatest relative expression change, with a fold-change of between 1.43 and 4.78. MMP-13 had a fold change of 1.16 to 1.38. Col-3A1 was down regulated, with a fold-change of between 0.21 and 0.31. These data demonstrate that experimentally induced oxidative stress in chondrocytes in monolayer culture increases levels of cellular senescence and alters the expression of genes relevant to the pathogenesis of canine OA. Coculture of osteoarthritic chondrocytes with normal canine chondrocytes resulted in gene modulation in the normal chondrocytes. Altered gene expression of ten genes known to play a role in the pathogenesis of osteoarthritis was detected in the normal chondrocytes (fold change shown in brackets); TNF-alpha (11.95), MMP-13 (5.93), MMP-3 (5.48), IL-4 (7.03), IL-6 (5.3), IL-8 (4.92), IL-F3 (4.22), COL-3A1 (4.12), ADAMTS-4 (3.78) and ADAMTS-5 (4.27). In total, 594 genes were significantly modulated suggesting that osteoarthritic chondrocytes contribute to the disease propagation by altering the gene expression of adjacent normal chondrocytes, thus recruiting them into the disease process. Gene expression changes were measured by microarray analysis and validated by RT-PCR and Western blot analysis. An epidemiological study of femoral heads collected from dogs undergoing total hip replacement surgery as a treatment for osteoarthritis of the coxofemoral joint secondary to canine hip dysplasia revealed that there was no characteristic pattern of cartilage lesion for canine hip dysplasia. Severe pathology of the femoral head with cartilage erosion occurred in 63.9% of cases and exposure of subchondral bone in 31.3% of cases. The work presented in this thesis has demonstrated that cellular senescence is a feature of chondrocytes from canine osteoarthritic cartilage and suggests that cellular senescence and oxidative stress play an important role in the pathogenesis of osteoarthritis in dogs.
Resumo:
2016
Resumo:
Papillomavirus associated tumors are well recognized entities in humans as well as in animals. Here is reviewed the current understanding of human papillomavirus (HPV) associated cancers to better understand the oncogenic mechanisms of Equine papillomavirus (EcPV) and Bovine Papillomavirus (BPV) in horses. In the first part of this study the interactions between Equine papillomavirus 2 (EcPV-2) and cell cycle proteins are discussed. EcPV-2 has been recognized as the cause of genital squamous cell carcinomas (SCCs) in horses, but the exact mechanism of carcinogenesis is not fully understood. The aim of the first part of this study is to assess the expression of cell cycle proteins p53, p16, pRB and Cyclin D1 in a series of equine SCCs and papillomas. Results confirm the role of EcPV-2 in the pathogenesis of genital SCCs. Moreover, in a small subset of ocular SCCs, EcPV-2 was detected for the first time. By immunohistochemistry, p53 was mostly expressed in ocular SCCs with a suprabasal localization. Regarding p16, overexpression was associated with increased mitotic index but not with viral infection. Investigation on pRB and Cyclin D1 proteins did not show significant correlation with other variables. The second part of this study is focused on the carcinogenetic mechanisms of BPV in equine sarcoids. The aim of the second part of this study was to characterize the typical histomorphological features of equine sarcoids, assess the expression of cell cycle proteins and Ki-67 proliferation index. Our results confirm that the typical histological features of sarcoids cannot be used to correctly classify the clinical types. Moreover, in a subset of sarcoids low pRB-Cyclin D1 scores were associated with simultaneous high p16 expression. The Ki-67 proliferation index confirm the low proliferative activity of sarcoids, except for tumors displaying a fascicular pattern. Finally, a subset of sarcoids recurred after excision.
Resumo:
Il carcinoma a cellule squamose è un tumore della pelle la cui incidenza è in costante crescita. Per questo motivo si sta ritagliando uno spazio sempre più importante all’interno di quella che è la dermatologia oncologica. Sebbene la nostra accuratezza diagnostica sia in progressivo miglioramento rimangono due nodi fondamentali da sciogliere: la differenziazione delle forme precoci dalla controparte precancerosa (cheratosi attinica), ed il riconoscimento di lesioni particolarmente aggressive con possibile prognosi infausta per stabilire un trattamento adeguato. La maggior attenzione rivolta a queste neoplasie ha portato negli ultimi anni ad innumerevoli pubblicazioni ed alla produzione di molteplici linee guida con indicazioni talvolta non conclusive, che spesso creano confusione nella pratica clinica quotidiana. In questo studio vengono prese in esame queste due problematiche analizzando la casistica a nostra disposizione. Vengono quindi valutati i criteri diagnostici dermoscopici ed il follow-up clinico e strumentale del carcinoma a cellule squamose con un intento di semplificare per rendere più agevole la pratica clinica. Inoltre, viene valutata l’utilità di alcuni marker molecolari come le proteine p16 e Ki67, che risultano facilmente reperibili, e la cui ricerca risulta poco costosa per valutarne l’utilità di uno studio più ampio in occasione di migliorare la definizione prognostica di queste lesioni.