977 resultados para numerical scheme
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.
Resumo:
Here the results for CD4+T cells count and the viral load obtained from HIV sero-positive patients are compared with results from numerical simulations by computer. Also, the standard scheme of administration of drugs anti HIV (HAART schemes) which uses constant doses is compared with an alternative sub-optimal teatment scheme which uses variable drug dosage according to the evolution of a quantitative measure of the side effects. The quantitative analysis done here shows that it is possible to obtain, using the alternative scheme, the same performance of actual data but using variable dosage and having fewer side effects. Optimal control theory is used to solve and also to provide a prognosis related to the strategies for control of viraemia.
Resumo:
A numerical study of mass conservation of MAC-type methods is presented, for viscoelastic free-surface flows. We use an implicit formulation which allows for greater time steps, and therefore time marching schemes for advecting the free surface marker particles have to be accurate in order to preserve the good mass conservation properties of this methodology. We then present an improvement by using a Runge-Kutta scheme coupled with a local linear extrapolation on the free surface. A thorough study of the viscoelastic impacting drop problem, for both Oldroyd-B and XPP fluid models, is presented, investigating the influence of timestep, grid spacing and other model parameters to the overall mass conservation of the method. Furthermore, an unsteady fountain flow is also simulated to illustrate the low mass conservation error obtained.
Resumo:
This paper is concerned with an overview of upwinding schemes, and further nonlinear applications of a recently introduced high resolution upwind differencing scheme, namely the ADBQUICKEST [V.G. Ferreira, F.A. Kurokawa, R.A.B. Queiroz, M.K. Kaibara, C.M. Oishi, J.A.Cuminato, A.F. Castelo, M.F. Tomé, S. McKee, assessment of a high-order finite difference upwind scheme for the simulation of convection-diffusion problems, International Journal for Numerical Methods in Fluids 60 (2009) 1-26]. The ADBQUICKEST scheme is a new TVD version of the QUICKEST [B.P. Leonard, A stable and accurate convective modeling procedure based on quadratic upstream interpolation, Computer Methods in Applied Mechanics and Engineering 19 (1979) 59-98] for solving nonlinear balance laws. The scheme is based on the concept of NV and TVD formalisms and satisfies a convective boundedness criterion. The accuracy of the scheme is compared with other popularly used convective upwinding schemes (see, for example, Roe (1985) [19], Van Leer (1974) [18] and Arora & Roe (1997) [17]) for solving nonlinear conservation laws (for example, Buckley-Leverett, shallow water and Euler equations). The ADBQUICKEST scheme is then used to solve six types of fluid flow problems of increasing complexity: namely, 2D aerosol filtration by fibrous filters; axisymmetric flow in a tubular membrane; 2D two-phase flow in a fluidized bed; 2D compressible Orszag-Tang MHD vortex; axisymmetric jet onto a flat surface at low Reynolds number and full 3D incompressible flows involving moving free surfaces. The numerical simulations indicate that this convective upwinding scheme is a good generic alternative for solving complex fluid dynamics problems. © 2012.
Resumo:
In this paper we present a finite difference MAC-type approach for solving three-dimensional viscoelastic incompressible free surface flows governed by the eXtended Pom-Pom (XPP) model, considering a wide range of parameters. The numerical formulation presented in this work is an extension to three-dimensions of our implicit technique [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 165-179] for solving two-dimensional viscoelastic free surface flows. To enhance the stability of the numerical method, we employ a combination of the projection method with an implicit technique for treating the pressure on the free surfaces. The differential constitutive equation of the fluid is solved using a second-order Runge-Kutta scheme. The numerical technique is validated by performing a mesh refinement study on a pipe flow, and the numerical results presented include the simulation of two complex viscoelastic free surface flows: extrudate-swell problem and jet buckling phenomenon. © 2013 Elsevier B.V.
Resumo:
A bounded upwinding scheme for numerical solution of hyperbolic conservation laws and Navier-Stokes equations is presented. The scheme is based on convection boundedness criterion and total variation diminishing stability criteria and developed by employing continuously differentiable functions. The accuracy of the scheme is verified by assessing the error and observed convergence rate on 1-D benchmark test cases. A comparative study between the new scheme and conventional total variation diminishing/convection boundedness criterion-based upwind schemes to solve standard nonlinear hyperbolic conservation laws is also accomplished. The scheme is then examined in the simulation of Newtonian and non-Newtonian fluid flows of increasing complexity; a satisfactory agreement has been observed in terms of the overall behavior. Finally, the scheme is used to study the hydrodynamics of a gas-solid flow in a bubbling fluidized bed. © 2013 John Wiley & Sons, Ltd.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper aims to contribute to the three-dimensional generalization of numerical prediction of crack propagation through the formulation of finite elements with embedded discontinuities. The analysis of crack propagation in two-dimensional problems yields lines of discontinuity that can be tracked in a relatively simple way through the sequential construction of straight line segments oriented according to the direction of failure within each finite element in the solid. In three-dimensional analysis, the construction of the discontinuity path is more complex because it requires the creation of plane surfaces within each element, which must be continuous between the elements. In the method proposed by Chaves (2003) the crack is determined by solving a problem analogous to the heat conduction problem, established from local failure orientations, based on the stress state of the mechanical problem. To minimize the computational effort, in this paper a new strategy is proposed whereby the analysis for tracking the discontinuity path is restricted to the domain formed by some elements near the crack surface that develops along the loading process. The proposed methodology is validated by performing three-dimensional analyses of basic problems of experimental fractures and comparing their results with those reported in the literature.
Resumo:
Consider a communication system in which a transmitter equipment sends fixed-size packets of data at a uniform rate to a receiver equipment. Consider also that these equipments are connected by a packet-switched network, which introduces a random delay to each packet. Here we propose an adaptive clock recovery scheme able of synchronizing the frequencies and the phases of these devices, within specified limits of precision. This scheme for achieving frequency and phase synchronization is based on measurements of the packet arrival times at the receiver, which are used to control the dynamics of a digital phase-locked loop. The scheme performance is evaluated via numerical simulations performed by using realistic parameter values. (C) 2011 Elsevier By. All rights reserved.
Resumo:
This paper reports experiments on the use of a recently introduced advection bounded upwinding scheme, namely TOPUS (Computers & Fluids 57 (2012) 208-224), for flows of practical interest. The numerical results are compared against analytical, numerical and experimental data and show good agreement with them. It is concluded that the TOPUS scheme is a competent, powerful and generic scheme for complex flow phenomena.
Resumo:
This paper deals with the numerical solution of complex fluid dynamics problems using a new bounded high resolution upwind scheme (called SDPUS-C1 henceforth), for convection term discretization. The scheme is based on TVD and CBC stability criteria and is implemented in the context of the finite volume/difference methodologies, either into the CLAWPACK software package for compressible flows or in the Freeflow simulation system for incompressible viscous flows. The performance of the proposed upwind non-oscillatory scheme is demonstrated by solving two-dimensional compressible flow problems, such as shock wave propagation and two-dimensional/axisymmetric incompressible moving free surface flows. The numerical results demonstrate that this new cell-interface reconstruction technique works very well in several practical applications. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
In this thesis we consider three different models for strongly correlated electrons, namely a multi-band Hubbard model as well as the spinless Falicov-Kimball model, both with a semi-elliptical density of states in the limit of infinite dimensions d, and the attractive Hubbard model on a square lattice in d=2.
In the first part, we study a two-band Hubbard model with unequal bandwidths and anisotropic Hund's rule coupling (J_z-model) in the limit of infinite dimensions within the dynamical mean-field theory (DMFT). Here, the DMFT impurity problem is solved with the use of quantum Monte Carlo (QMC) simulations. Our main result is that the J_z-model describes the occurrence of an orbital-selective Mott transition (OSMT), in contrast to earlier findings. We investigate the model with a high-precision DMFT algorithm, which was developed as part of this thesis and which supplements QMC with a high-frequency expansion of the self-energy.
The main advantage of this scheme is the extraordinary accuracy of the numerical solutions, which can be obtained already with moderate computational effort, so that studies of multi-orbital systems within the DMFT+QMC are strongly improved. We also found that a suitably defined
Falicov-Kimball (FK) model exhibits an OSMT, revealing the close connection of the Falicov-Kimball physics to the J_z-model in the OSM phase.
In the second part of this thesis we study the attractive Hubbard model in two spatial dimensions within second-order self-consistent perturbation theory.
This model is considered on a square lattice at finite doping and at low temperatures. Our main result is that the predictions of first-order perturbation theory (Hartree-Fock approximation) are renormalized by a factor of the order of unity even at arbitrarily weak interaction (U->0). The renormalization factor q can be evaluated as a function of the filling n for 0
Resumo:
Hochreichende Konvektion über Waldbränden ist eine der intensivsten Formen von atmosphärischer Konvektion. Die extreme Wolkendynamik mit hohen vertikalen Windgeschwindigkeiten (bis 20 m/s) bereits an der Wolkenbasis, hohen Wasserdampfübersättigungen (bis 1%) und die durch das Feuer hohen Anzahlkonzentration von Aerosolpartikeln (bis 100000 cm^-3) bilden einen besonderen Rahmen für Aerosol-Wolken Wechselwirkungen.Ein entscheidender Schritt in der mikrophysikalischen Entwicklung einer konvektiven Wolke ist die Aktivierung von Aerosolpartikeln zu Wolkentropfen. Dieser Aktivierungsprozess bestimmt die anfängliche Anzahl und Größe der Wolkentropfen und kann daher die Entwicklung einer konvektiven Wolke und deren Niederschlagsbildung beeinflussen. Die wichtigsten Faktoren, welche die anfängliche Anzahl und Größe der Wolkentropfen bestimmen, sind die Größe und Hygroskopizität der an der Wolkenbasis verfügbaren Aerosolpartikel sowie die vertikale Windgeschwindigkeit. Um den Einfluss dieser Faktoren unter pyro-konvektiven Bedingungen zu untersuchen, wurden numerische Simulationen mit Hilfe eines Wolkenpaketmodells mit detaillierter spektraler Beschreibung der Wolkenmikrophysik durchgeführt. Diese Ergebnisse können in drei unterschiedliche Bereiche abhängig vom Verhältnis zwischen vertikaler Windgeschwindigkeit und Aerosolanzahlkonzentration (w/NCN) eingeteilt werden: (1) ein durch die Aerosolkonzentration limitierter Bereich (hohes w/NCN), (2) ein durch die vertikale Windgeschwindigkeit limitierter Bereich (niedriges w/NCN) und (3) ein Übergangsbereich (mittleres w/NCN). Die Ergebnisse zeigen, dass die Variabilität der anfänglichen Anzahlkonzentration der Wolkentropfen in (pyro-) konvektiven Wolken hauptsächlich durch die Variabilität der vertikalen Windgeschwindigkeit und der Aerosolkonzentration bestimmt wird. rnUm die mikrophysikalischen Prozesse innerhalb der rauchigen Aufwindregion einer pyrokonvektiven Wolke mit einer detaillierten spektralen Mikrophysik zu untersuchen, wurde das Paketmodel entlang einer Trajektorie innerhalb der Aufwindregion initialisiert. Diese Trajektore wurde durch dreidimensionale Simulationen eines pyro-konvektiven Ereignisses durch das Model ATHAM berechnet. Es zeigt sich, dass die Anzahlkonzentration der Wolkentropfen mit steigender Aerosolkonzentration ansteigt. Auf der anderen Seite verringert sich die Größe der Wolkentropfen mit steigender Aerosolkonzentration. Die Reduzierung der Verbreiterung des Tropfenspektrums stimmt mit den Ergebnissen aus Messungen überein und unterstützt das Konzept der Unterdrückung von Niederschlag in stark verschmutzen Wolken.Mit Hilfe des Models ATHAM wurden die dynamischen und mikrophysikalischen Prozesse von pyro-konvektiven Wolken, aufbauend auf einer realistischen Parametrisierung der Aktivierung von Aerosolpartikeln durch die Ergebnisse der Aktivierungsstudie, mit zwei- und dreidimensionalen Simulationen untersucht. Ein modernes zweimomenten mikrophysikalisches Schema wurde in ATHAM implementiert, um den Einfluss der Anzahlkonzentration von Aerosolpartikeln auf die Entwicklung von idealisierten pyro-konvektiven Wolken in US Standardamtosphären für die mittleren Breiten und den Tropen zu untersuchen. Die Ergebnisse zeigen, dass die Anzahlkonzentration der Aerosolpartikel die Bildung von Regen beeinflusst. Für geringe Aerosolkonzentrationen findet die rasche Regenbildung hauptsächlich durch warme mikrophysikalische Prozesse statt. Für höhere Aerosolkonzentrationen ist die Eisphase wichtiger für die Bildung von Regen. Dies führt zu einem verspäteten Einsetzen von Niederschlag für verunreinigtere Atmosphären. Außerdem wird gezeigt, dass die Zusammensetzung der Eisnukleationspartikel (IN) einen starken Einfluss auf die dynamische und mikrophysikalische Struktur solcher Wolken hat. Bei sehr effizienten IN bildet sich Regen früher. Die Untersuchung zum Einfluss des atmosphärischen Hintergrundprofils zeigt eine geringe Auswirkung der Meteorologie auf die Sensitivität der pyro-konvektiven Wolken auf diernAerosolkonzentration. Zum Abschluss wird gezeigt, dass die durch das Feuer emittierte Hitze einen deutlichen Einfluss auf die Entwicklung und die Wolkenobergrenze von pyro-konvektive Wolken hat. Zusammenfassend kann gesagt werden, dass in dieser Dissertation die Mikrophysik von pyrokonvektiven Wolken mit Hilfe von idealisierten Simulation eines Wolkenpaketmodell mit detaillierte spektraler Mikrophysik und eines 3D Modells mit einem zweimomenten Schema im Detail untersucht wurde. Es wird gezeigt, dass die extremen Bedingungen im Bezug auf die vertikale Windgeschwindigkeiten und Aerosolkonzentrationen einen deutlichen Einfluss auf die Entwicklung von pyro-konvektiven Wolken haben.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
Liquids and gasses form a vital part of nature. Many of these are complex fluids with non-Newtonian behaviour. We introduce a mathematical model describing the unsteady motion of an incompressible polymeric fluid. Each polymer molecule is treated as two beads connected by a spring. For the nonlinear spring force it is not possible to obtain a closed system of equations, unless we approximate the force law. The Peterlin approximation replaces the length of the spring by the length of the average spring. Consequently, the macroscopic dumbbell-based model for dilute polymer solutions is obtained. The model consists of the conservation of mass and momentum and time evolution of the symmetric positive definite conformation tensor, where the diffusive effects are taken into account. In two space dimensions we prove global in time existence of weak solutions. Assuming more regular data we show higher regularity and consequently uniqueness of the weak solution. For the Oseen-type Peterlin model we propose a linear pressure-stabilized characteristics finite element scheme. We derive the corresponding error estimates and we prove, for linear finite elements, the optimal first order accuracy. Theoretical error of the pressure-stabilized characteristic finite element scheme is confirmed by a series of numerical experiments.