887 resultados para full-scale testing


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Steady and pulsed flow stationary impinging jets have been employed to simulate the wind field produced by a thunderstorm microburst. The effect on the low level wind field due to jet inclination with respect to the impingement surface has been studied. A single point velocity time history has been compared to the full-scale Andrews AFB microburst for model validation. It was found that for steady flow, jet inclination increased the radial extent of high winds but did not increase the magnitude of these winds when compared to the perpendicular impingement case. It was found that for inclined pulsed flow the design wind conditions could increase compared to perpendicular impingement. It was found that the location of peak winds was affected by varying the outlet conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the effect of plasterboard joints on the fire performance of cold-formed steel walls. Plasterboard joints are unavoidable. However, they can be arranged in a way that they do not significantly influence the fire performance of cold-formed steel walls. Hence a research study into the effects of plasterboard joints on the fire performance of plasterboard lined cold-formed steel walls was undertaken using both full-scale fire tests and numerical studies. In this study a back-blocking technique was used to eliminate the plasterboard joints being located over the studs. Instead plasterboard joints were used between studs with 150 mm wide plasterboards as back-blocks. Both experimental and numerical results from this study show that the fire resistance rating of single plasterboard lined cold-formed steel walls can be increased by 25% through the use of a back-blocking joint arrangement in comparison to the traditional plasterboard joint arrangement over the studs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Slippage in the contact roller-races has always played a central role in the field of diagnostics of rolling element bearings. Due to this phenomenon, vibrations triggered by a localized damage are not strictly periodic and therefore not detectable by means of common spectral functions as power spectral density or discrete Fourier transform. Due to the strong second order cyclostationary component, characterizing these signals, techniques such as cyclic coherence, its integrated form and square envelope spectrum have proven to be effective in a wide range of applications. An expert user can easily identify a damage and its location within the bearing components by looking for particular patterns of peaks in the output of the selected cyclostationary tool. These peaks will be found in the neighborhood of specific frequencies, that can be calculated in advance as functions of the geometrical features of the bearing itself. Unfortunately the non-periodicity of the vibration signal is not the only consequence of the slippage: often it also involves a displacement of the damage characteristic peaks from the theoretically expected frequencies. This issue becomes particularly important in the attempt to develop highly automated algorithms for bearing damage recognition, and, in order to correctly set thresholds and tolerances, a quantitative description of the magnitude of the above mentioned deviations is needed. This paper is aimed at identifying the dependency of the deviations on the different operating conditions. This has been possible thanks to an extended experimental activity performed on a full scale bearing test rig, able to reproduce realistically the operating and environmental conditions typical of an industrial high power electric motor and gearbox. The importance of load will be investigated in detail for different bearing damages. Finally some guidelines on how to cope with such deviations will be given, accordingly to the expertise obtained in the experimental activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monitoring of the integrity of rolling element bearings in the traction system of high speed trains is a fundamental operation in order to avoid catastrophic failures and to implement effective condition-based maintenance strategies. Diagnostics of rolling element bearings is usually based on vibration signal analysis by means of suitable signal processing techniques. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in industrial applications, particularly in the field of rail transport, remains scarcely investigated. This paper will address the diagnostics of bearings taken from the service after a long term operation on a high speed train. These worn bearings have been installed on a test-rig, consisting of a complete full-scale traction system of a high speed train, able to reproduce the effects of wheel-track interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is also proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rolling element bearings are the most critical components in the traction system of high speed trains. Monitoring their integrity is a fundamental operation in order to avoid catastrophic failures and to implement effective condition based maintenance strategies. Generally, diagnostics of rolling element bearings is usually performed by analyzing vibration signals measured by accelerometers placed in the proximity of the bearing under investigation. Several papers have been published on this subject in the last two decades, mainly devoted to the development and assessment of signal processing techniques for diagnostics. The experimental validation of such techniques has been traditionally performed by means of laboratory tests on artificially damaged bearings, while their actual effectiveness in specific industrial applications, particularly in rail industry, remains scarcely investigated. This paper is aimed at filling this knowledge gap, by addressing the diagnostics of bearings taken from the service after a long term operation on the traction system of a high speed train. Moreover, in order to test the effectiveness of the diagnostic procedures in the environmental conditions peculiar to the rail application, a specific test-rig has been built, consisting of a complete full-scale train traction system, able to reproduce the effects of wheeltrack interaction and bogie-wheelset dynamics. The results of the experimental campaign show that suitable signal processing techniques are able to diagnose bearing failures even in this harsh and noisy application. Moreover, the most suitable location of the sensors on the traction system is proposed, in order to limit their number.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Traditionally, the fire resistance rating of Light gauge steel frame (LSF) wall systems is based on approximate prescriptive methods developed using limited fire tests. These fire tests are conducted using standard fire time-temperature curve given in ISO 834. However, in recent times fire has become a major disaster in buildings due to the increase in fire loads as a result of modern furniture and lightweight construction, which make use of thermoplastics materials, synthetic foams and fabrics. Therefore a detailed research study into the performance of load bearing LSF wall systems under both standard and realistic design fires on one side was undertaken to develop improved fire design rules. This study included both full scale fire tests and numerical studies of eight different LSF wall systems conducted for both the standard fire curve and the recently developed realistic design fire curves. The use of previous fire design rules developed for LSF walls subjected to non-uniform elevated temperature distributions based on AISI design manual and Eurocode 3 Parts 1.2 and 1.3 was investigated first. New simplified fire design rules based on AS/NZS 4600, North American Specification and Eurocode 3 Part 1.3 were then proposed with suitable allowances for the interaction effects of compression and bending actions. The importance of considering thermal bowing, magnified thermal bowing and neutral axis shift in the fire design was also investigated and their effects were included. A spread sheet based design tool was developed based on the new design rules to predict the failure load ratio versus time and temperature curves for varying LSF wall configurations. The accuracy of the proposed design rules was verified using the fire test and finite element analysis results for various wall configurations, steel grades, thicknesses and load ratios under both standard and realistic design fire conditions. A simplified method was also proposed to predict the fire resistance rating of LSF walls based on two sets of equations developed for the load ratio-hot flange temperature and the time-temperature relationships. This paper presents the details of this study on LSF wall systems under fire conditions and the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Cold-formed steel members are widely used in load bearing Light gauge steel frame (LSF) wall systems with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. Hence there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the LSF wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the LSF wall studs. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of LSF wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strengths of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This paper presents the details of this investigation into the accuracy of using currently available fire design rules of LSF walls and the results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Light Gauge Steel Framing (LSF) walls made of cold-formed and thin-walled steel lipped channel studs with plasterboard linings on both sides are commonly used in commercial, industrial and residential buildings. However, there is limited data about their structural and thermal performances under fire conditions. Recent research at the Queensland University of Technology has investigated the structural and thermal behaviour of load bearing LSF wall systems. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. This paper presents the details of an investigation into the fire performance of LSF wall panels based on an extensive finite element analysis based parametric study. The LSF wall panels with eight different plasterboard-insulation configurations were considered under standard fire conditions. Effects of varying steel grades, steel thicknesses, screw spacing, plasterboard restraint, insulation materials and load ratio on the fire performance of LSF walls were investigated and the results of extensive fire performance data are presented in the form of load ratio versus time and critical hot flange (failure) temperature curves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the details of full scale fire tests of LSF wall panels conducted using realistic fire time-temperature curves. Tests included eight LSF wall specimens of various configurations exposed to both parametric design and natural fire curves. Details of the fire test set-up, test procedure and the results including the measured time-temperature and deformation curves of LSF wall panels are presented along with wall stud failure modes and times. This paper also compares the structural and thermal behavioural characteristics of LSF wall studs with those based on the standard time-temperature curve. Finally, the stud failure times and temperatures are summarized for both standard and realistic design fire curves. This study provides the necessary test data to validate the numerical models of LSF wall panels and to undertake a detailed study into the structural and thermal performance of LSF wall panels exposed to realistic design fire curves.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fire safety design of buildings is essential to safeguard lives and minimize the loss of damage to properties. Light-weight cold-formed steel channel sections along with fire resistive plasterboards are used to construct light gauge steel frame floor systems to provide the required fire resistance rating. However, simply adding more plasterboard layers is not an efficient method to increase FRR. Hence this research focuses on using joists with improved joist section profiles such as hollow flange sections to increase the structural capacity of floor systems under fire conditions and thus their FRR. In this research, the structural and thermal behaviour of LSF floor systems made of LiteSteel Beams with different plasterboard and insulation configurations was investigated using four full scale tests under standard fires. Based on the ultimate failure load of the floor joist at ambient temperature, transient state fire tests were conducted for different Load Ratios. These fire tests showed that the new LSF floor system has improved the FRR well above that of those made of lipped channel sections. The joist failure was predominantly due to local buckling of LSB compression flanges near mid-span with severe yielding of tension flanges. Fire tests have provided valuable structural and thermal performance data of tested floor systems that included time-temperature profiles, and failure times and temperatures. Average failure temperatures of LSB joists and reduced yield strengths were used to predict their ultimate moment capacities, which were compared with corresponding test capacities. This allowed an assessment in relation to the accuracy of current design rules for steel joists at elevated temperatures. This paper presents the details of full scale fire tests of LSF floor systems made of LSB joists with different plasterboard and insulation configurations and their results along with some important findings.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper discusses the issue of sensing and control for stabilizing a swinging load. Our work has focused in particular on the dragline as used for overburden stripping in open-pit coal mining, but many of the principles would also be applicable to construction cranes. Results obtained from experimental work on a full-scale production dragline are presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Draglines are extremely large machines that are widely used in open-cut coal mines for overburden stripping. Since 1994 we have been working toward the development of a computer control system capable of automatically driving a dragline for a large portion of its operating cycle. This has necessitated the development and experimental evaluation of sensor systems, machines models, closed-loop control controllers, and an operator interface. This paper describes our steps toward the goal through scale-model and full-scale field experimentation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Introduction Patients with dysphagia (PWDs) have been shown to be four times more likely to suffer medication administration errors (MAEs).1 2 Individualised medication administration guides (I-MAGs) which outline how each formulation should be administered, have been developed to standardise medication administration by nurses on the ward and reduce the likelihood of errors. This pilot study aimed to determine the recruitment rates, estimate effect on errors and develop the intervention to design a future full scale randomised controlled trial to determine the costs and effects of I-MAG implementation. Ethical approval was granted by local ethics committee. Method Software was developed to enable I-MAG production (based on current best practice)3 4 for all PWDs on two care of the older person wards admitted during a six month period from January to July 2011. I-MAGs were attached to the medication administration record charts to be utilised by nurses when administering medicines. Staff training was provided for all staff on the intervention wards. Two care of the older person wards in the same hospital were used for control purposes. All patients with dysphagia were recruited for follow up purposes at discharge. Four ward rounds at each intervention and control ward were observed pre and post I-MAG implementation to determine the level of medication administration errors. NHS ethical approval for the study was obtained. Results 164 I-MAGs were provided for 75 patients with dysphagia (PWDs) in the two intervention wards. At discharge, 23 patients in the intervention wards and 7 patients in the control wards were approached for recruitment of which 17 (74%) & 5 (71.5%) respectively consented. Discussion Recruitment rates were low on discharge due to the dysphagia remitting during hospitalisation. The introduction of the I-MAG demonstrated no effect on the quality of administration on the intervention ward and interestingly practice improved on the control ward. The observation of medication rounds at least one month post I-MAG removal may have identified a reversal to normal practice and ideally observations should have been undertaken with I-MAGs in place. Identification of the reason for the improvement in the control ward is warranted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents a multi-criteria based approach for nondestructive diagnostic structural integrity assessment of a decommissioned flatbed rail wagon (FBRW) used for road bridge superstructure rehabilitation and replacement applications. First, full-scale vibration and static test data sets are employed in a FE model of the FBRW to obtain the best ‘initial’ estimate of the model parameters. Second, the ‘final’ model parameters are predicted using sensitivity-based perturbation analysis without significant difficulties encountered. Consequently, the updated FBRW model is validated using the independent sets of full-scale laboratory static test data. Finally, the updated and validated FE model of the FBRW is used for structural integrity assessment of a single lane FBRW bridge subjected to the Australian bridge design traffic load.