855 resultados para WHOLE-BODY COUTING
Resumo:
C57BL/6J mice were fed a high-fat, carbohydrate-free diet (HFD) for 9 mo. Approximately 50% of the mice became obese and diabetic (ObD), approximately 10% lean and diabetic (LD), approximately 10% lean and nondiabetic (LnD), and approximately 30% displayed intermediate phenotype. All of the HFD mice were insulin resistant. In the fasted state, whole body glucose clearance was reduced in ObD mice, unchanged in the LD mice, and increased in the LnD mice compared with the normal-chow mice. Because fasted ObD mice were hyperinsulinemic and the lean mice slightly insulinopenic, there was no correlation between insulin levels and increased glucose utilization. In vivo, tissue glucose uptake assessed by 2-[(14)C]deoxyglucose accumulation was reduced in most muscles in the ObD mice but increased in the LnD mice compared with the values of the control mice. In the LD mice, the glucose uptake rates were reduced in extensor digitorum longus (EDL) and total hindlimb but increased in soleus, diaphragm, and heart. When assessed in vitro, glucose utilization rates in the absence and presence of insulin were similar in diaphragm, soleus, and EDL muscles isolated from all groups of mice. Thus, in genetically homogenous mice, HFD feeding lead to different metabolic adaptations. Whereas all of the mice became insulin resistant, this was associated, in obese mice, with decreased glucose clearance and hyperinsulinemia and, in lean mice, with increased glucose clearance in the presence of mild insulinopenia. Therefore, increased glucose clearance in lean mice could not be explained by increased insulin level, indicating that other in vivo mechanisms are triggered to control muscle glucose utilization. These adaptive mechanisms could participate in the protection against development of obesity.
Resumo:
Monoclonal antibodies (MoAb) that react with the T-lymphocyte markers called cluster of differentiation CD5 and CD2 were labeled with iodine 131 (131I) and were injected intravenously in nude mice bearing solid subcutaneous xenografts derived from the human T-cell leukemia line Ichikawa. Both MoAb anti-CD5 and anti-CD2 yielded favorable mean tumor to whole-body ratios of 3.8 and 5.1, respectively. These ratios were further increased up to 10.0 for MoAb anti-CD5 and 15.5 for MoAb anti-CD2 by using their F(ab')2 fragments. The tumors could be imaged clearly by external scanning after injection of F(ab')2 fragments from both MoAb. F(ab')2 fragments from MoAb anti-CD2 and of a third MoAb recognizing the clonotypic determinant (Ti) of the antigen receptor expressed by the human T-cell line Jurkat were injected in mice bearing intrasplenic Jurkat xenografts. A selective localization of both fragments in tumor tissue was demonstrated with mean tumor to whole-body ratios of 7.5 and 4.1 for MoAb anti-CD2 and anti-Ti, respectively. These in vivo experimental results may provide useful information for the potential use of radiolabeled MoAb and fragments in the diagnosis and treatment of patients with T-cell lymphoma and different other forms of T-cell malignancies.
Resumo:
Activation of the peroxisome proliferator-activated receptor (PPAR)-alpha increases lipid catabolism and lowers the concentration of circulating lipid, but its role in the control of glucose metabolism is not as clearly established. Here we compared PPARalpha knockout mice with wild type and confirmed that the former developed hypoglycemia during fasting. This was associated with only a slight increase in insulin sensitivity but a dramatic increase in whole-body and adipose tissue glucose use rates in the fasting state. The white sc and visceral fat depots were larger due to an increase in the size and number of adipocytes, and their level of GLUT4 expression was higher and no longer regulated by the fed-to-fast transition. To evaluate whether these adipocyte deregulations were secondary to the absence of PPARalpha from liver, we reexpresssed this transcription factor in the liver of knockout mice using recombinant adenoviruses. Whereas more than 90% of the hepatocytes were infected and PPARalpha expression was restored to normal levels, the whole-body glucose use rate remained elevated. Next, to evaluate whether brain PPARalpha could affect glucose homeostasis, we activated brain PPARalpha in wild-type mice by infusing WY14643 into the lateral ventricle and showed that whole-body glucose use was reduced. Hence, our data show that PPARalpha is involved in the regulation of glucose homeostasis, insulin sensitivity, fat accumulation, and adipose tissue glucose use by a mechanism that does not require PPARalpha expression in the liver. By contrast, activation of PPARalpha in the brain stimulates peripheral glucose use. This suggests that the alteration in adipocyte glucose metabolism in the knockout mice may result from the absence of PPARalpha in the brain.
Resumo:
INTRODUCTION: Eddy currents induced by switching of magnetic field gradients can lead to distortions in short echo-time spectroscopy or diffusion weighted imaging. In small bore magnets, such as human head-only systems, minimization of eddy current effects is more demanding because of the proximity of the gradient coil to conducting structures. METHODS: In the present study, the eddy current behavior achievable on a recently installed 7 tesla-68 cm bore head-only magnet was characterized. RESULTS: Residual effects after compensation were shown to be on the same order of magnitude as those measured on two whole body systems (3 and 4.7 T), while using two to three fold increased gradient slewrates.
Resumo:
Path integration is known to provide information to keep track of spatial location. Surprisingly, few investigations concerning sex differences in computation of the traveling distance have been done. This work was aimed at analyzing the reproduction of both passive and active linear displacements in women and men. To this end, the displacement of blindfolded subjects was done in a wheelchair, then on foot, three times in each condition for a fixed distance. Copies of passive and active traveling distance, distance estimations and pointing responses towards the starting point were analyzed. In passive condition and comparatively to men, women error was larger. Whereas traveling distance was generally underestimated in women, it was overestimated in men. In active condition, no sex differences were observed. When blindfolded subjects have to estimate the traveling distance, the female error was larger than the male one. But, when subjects were asked to indicate the visual cue corresponding to the traveling distance, the male error was larger than the female one. Finally, pointing to the starting point (0°) after a whole-body rotation showed a larger deviation from 0° in men than in women. These results suggest that sex of the subjects influence brain computation of path integration information.
Resumo:
The effect of diet composition [high-carbohydrate, low-fat (HC) and high-fat, low-carbohydrate (HF) diets] on macronutrient intakes and nutrient balances was investigated in young men of normal body weight. Eleven subjects were studied on two occasions for 48 h in a whole-body indirect calorimeter in a crossover design. Subjects selected their meals from a list containing a large variety of common food, which had a food quotient > 0.85 for the HC diet and < 0.85 for the HF diet. The average ad libitum intake was 14.41 +/- 0.85 MJ/d (67%, 18%, and 15% of energy as carbohydrate, fat, and protein, respectively) with the HC diet and 18.25 +/- 0.90 MJ/d (26%, 61%, and 13% of energy as carbohydrate, fat, and protein, respectively) with the HF diet. Total energy expenditure was not significantly influenced by diet composition: 10.46 +/- 0.27 and 10.97 +/- 0.22 MJ/d for the HC and HF diets, respectively. During the 2 test days, cumulative carbohydrate storage was 418 +/- 72 and 205 +/- 47 g, and fat balance was 29 +/- 17 and 291 +/- 29 g with the HC and HF diets, respectively. Only the HF diet induced a significantly positive fat balance. These results emphasize the important role of the dietary fat content in body fat storage.
Resumo:
AIMS/HYPOTHESIS: Pancreatic beta cells play a central role in the control of glucose homeostasis by secreting insulin to stimulate glucose uptake by peripheral tissues. Understanding the molecular mechanisms that control beta cell function and plasticity has critical implications for the pathophysiology and therapy of major forms of diabetes. Selective gene inactivation in pancreatic beta cells, using the Cre-lox system, is a powerful approach to assess the role of particular genes in beta cells and their impact on whole body glucose homeostasis. Several Cre recombinase (Cre) deleter mice have been established to allow inactivation of genes in beta cells, but many show non-specific recombination in other cell types, often in the brain. METHODS: We describe the generation of Ins1 (Cre) and Ins1 (CreERT2) mice in which the Cre or Cre-oestrogen receptor fusion protein (CreERT2) recombinases have been introduced at the initiation codon of the Ins1 gene. RESULTS: We show that Ins1 (Cre) mice induce efficient and selective recombination of floxed genes in beta cells from the time of birth, with no recombination in the central nervous system. These mice have normal body weight and glucose homeostasis. Furthermore, we show that tamoxifen treatment of adult Ins1 (CreERT2) mice crossed with Rosa26-tdTomato mice induces efficient recombination in beta cells. CONCLUSIONS/INTERPRETATION: These two strains of deleter mice are useful new resources to investigate the molecular physiology of pancreatic beta cells.
Resumo:
Over thirty years ago, Leamer (1983) - among many others - expressed doubts about the quality and usefulness of empirical analyses for the economic profession by stating that "hardly anyone takes data analyses seriously. Or perhaps more accurately, hardly anyone takes anyone else's data analyses seriously" (p.37). Improvements in data quality, more robust estimation methods and the evolution of better research designs seem to make that assertion no longer justifiable (see Angrist and Pischke (2010) for a recent response to Leamer's essay). The economic profes- sion and policy makers alike often rely on empirical evidence as a means to investigate policy relevant questions. The approach of using scientifically rigorous and systematic evidence to identify policies and programs that are capable of improving policy-relevant outcomes is known under the increasingly popular notion of evidence-based policy. Evidence-based economic policy often relies on randomized or quasi-natural experiments in order to identify causal effects of policies. These can require relatively strong assumptions or raise concerns of external validity. In the context of this thesis, potential concerns are for example endogeneity of policy reforms with respect to the business cycle in the first chapter, the trade-off between precision and bias in the regression-discontinuity setting in chapter 2 or non-representativeness of the sample due to self-selection in chapter 3. While the identification strategies are very useful to gain insights into the causal effects of specific policy questions, transforming the evidence into concrete policy conclusions can be challenging. Policy develop- ment should therefore rely on the systematic evidence of a whole body of research on a specific policy question rather than on a single analysis. In this sense, this thesis cannot and should not be viewed as a comprehensive analysis of specific policy issues but rather as a first step towards a better understanding of certain aspects of a policy question. The thesis applies new and innovative identification strategies to policy-relevant and topical questions in the fields of labor economics and behavioral environmental economics. Each chapter relies on a different identification strategy. In the first chapter, we employ a difference- in-differences approach to exploit the quasi-experimental change in the entitlement of the max- imum unemployment benefit duration to identify the medium-run effects of reduced benefit durations on post-unemployment outcomes. Shortening benefit duration carries a double- dividend: It generates fiscal benefits without deteriorating the quality of job-matches. On the contrary, shortened benefit durations improve medium-run earnings and employment possibly through containing the negative effects of skill depreciation or stigmatization. While the first chapter provides only indirect evidence on the underlying behavioral channels, in the second chapter I develop a novel approach that allows to learn about the relative impor- tance of the two key margins of job search - reservation wage choice and search effort. In the framework of a standard non-stationary job search model, I show how the exit rate from un- employment can be decomposed in a way that is informative on reservation wage movements over the unemployment spell. The empirical analysis relies on a sharp discontinuity in unem- ployment benefit entitlement, which can be exploited in a regression-discontinuity approach to identify the effects of extended benefit durations on unemployment and survivor functions. I find evidence that calls for an important role of reservation wage choices for job search be- havior. This can have direct implications for the optimal design of unemployment insurance policies. The third chapter - while thematically detached from the other chapters - addresses one of the major policy challenges of the 21st century: climate change and resource consumption. Many governments have recently put energy efficiency on top of their agendas. While pricing instru- ments aimed at regulating the energy demand have often been found to be short-lived and difficult to enforce politically, the focus of energy conservation programs has shifted towards behavioral approaches - such as provision of information or social norm feedback. The third chapter describes a randomized controlled field experiment in which we discuss the effective- ness of different types of feedback on residential electricity consumption. We find that detailed and real-time feedback caused persistent electricity reductions on the order of 3 to 5 % of daily electricity consumption. Also social norm information can generate substantial electricity sav- ings when designed appropriately. The findings suggest that behavioral approaches constitute effective and relatively cheap way of improving residential energy-efficiency.
Resumo:
We present the long-term results of 18 chemotherapy relapsed indolent (N = 12) or transformed (N = 6) NHL patients of a phase II anti-CD20 (131)I-tositumomab (Bexxar) therapy study. The biphasic therapy included two injections of 450 mg unlabelled antibody combined with (131)I-tositumomab once as dosimetric and once as therapeutic activity delivering 75 or 65 cGy whole-body radiation dose to patients with normal or reduced platelet counts, respectively. Two patients were not treated due to disease progression during dosimetry. The overall response rate was 81% in the 16 patients treated, including 50% CR/CRu and 31% PR. Median progression free survival of the 16 patients was 22.5 months. Median overall survival has not been reached after a median observation of 48 months. Median PFS of complete responders (CR/CRu) has not been reached and will be greater than 51 months. Short-term side effects were mainly haematological and transient. Among the relevant long-term side effects, one patient previously treated with CHOP chemotherapy died from secondary myelodysplasia. Four patients developed HAMA. In conclusion, (131)I-tositumomab RIT demonstrated durable responses especially in those patients who achieved a complete response. Six of eight CR/CRu are ongoing after 46-70 months.
Resumo:
Over the past two decades, intermittent hypoxic training (IHT), that is, a method where athletes live at or near sea level but train under hypoxic conditions, has gained unprecedented popularity. By adding the stress of hypoxia during 'aerobic' or 'anaerobic' interval training, it is believed that IHT would potentiate greater performance improvements compared to similar training at sea level. A thorough analysis of studies including IHT, however, leads to strikingly poor benefits for sea-level performance improvement, compared to the same training method performed in normoxia. Despite the positive molecular adaptations observed after various IHT modalities, the characteristics of optimal training stimulus in hypoxia are still unclear and their functional translation in terms of whole-body performance enhancement is minimal. To overcome some of the inherent limitations of IHT (lower training stimulus due to hypoxia), recent studies have successfully investigated a new training method based on the repetition of short (<30 s) 'all-out' sprints with incomplete recoveries in hypoxia, the so-called repeated sprint training in hypoxia (RSH). The aims of the present review are therefore threefold: first, to summarise the main mechanisms for interval training and repeated sprint training in normoxia. Second, to critically analyse the results of the studies involving high-intensity exercises performed in hypoxia for sea-level performance enhancement by differentiating IHT and RSH. Third, to discuss the potential mechanisms underpinning the effectiveness of those methods, and their inherent limitations, along with the new research avenues surrounding this topic.
Resumo:
Aim: Biokinetics and dosimetry of 111In-DOTA-NOC-ATE (NOCATE) and 111In-DTPA-octreotide (Octreoscan?, OCTREO) were comparatively studied in the same patients. Patients and Methods: Seventeen patients (10 males, 7 females), mean age 60 years referred for an Octreoscan? because of carcinoid (N=9), unspecified neurodendocrine tumors (N=6), thymoma (N=1) or medullary thyroid carcinoma (N=1) accepted a second study with NOCATE. Four patients had no detectable tumor at the time of scanning. Whole-body (WB) anterior-posterior scans were recorded 0.5 (100% reference scan), 4, 24 and 48 hrs (N=17) and 120 hrs (N=6) after injection. OCTREO (178±15 MBq) preceded NOCATE (108±14 MBq) imaging with 16±5 days in 16 patients while 1 patient had first NOCATE followed 14 days later by OCTREO. Blood samples were taken 5, 15, 30, 60, 240 and 1440 min after injection. Background corrected geometric mean counts of WB, lung, kidney, liver, spleen and blood counts expressed in % of the initial composite WB and blood counts, respectively were fitted to bi- or single exponential curves and dosimetry was performed for male and female patients using MIRDOSE3.1 and OLINDA/EXM. Results: Initially, WB, lung and kidney activity was similar but retention was significantly higher for NOCATE compared with OCTREO. Liver and spleen uptake of NOCATE was higher from beginning (p<0.001) and remained so over time. Activity in rest of body showed similar α and β half-lives, but the β half-life fraction of NOCATE was much higher than OCTREO (49% vs. 19%, respectively). Blood T1/2β was longer for NOCATE compared with OCTREO (19 vs. 6h). Residence times were similar in male and female patients while they were in both genders higher for NOCATE than OCTREO. Consequently, effective dose (ED) for NOCATE (ED 114 and 134 μSv/MBq for man and women, respectively) exceeded that of OCTREO (ED = 61 and 71 μSv/MBq), the latter results being close to the ICRP-published radiation dose of OCTREO (ED = 54 and 71 µSv/MBq, respectively). Differential activity measurement in blood cells and plasma showed that only a minor fraction of NOCATE and OCTREO (<5 % in the mean) was bound to globular blood components. Conclusions: NOCATE showed higher retention in normal organs and delivered roughly twice the radiation dose of OCTREO. The ED of OCTREO in these patients was similar to ICRP80 report when adopting a bladder voiding interval of 2 hours.
Resumo:
AIM: Contribution of 3-phase 18F-fluorocholine PET/CT in suspected prostate cancer recurrence at early rise of PSA. PATIENTS, METHODS: Retrospective analysis was performed in 47 patients after initial treatment with radiotherapy (n=30) or surgery (n=17). Following CT, 10 minutes list-mode PET acquisition was done over the prostate bed after injection of 300 MBq of 18F-fluorocholine. Three timeframes of 3 minutes each were reconstructed for analysis. All patients underwent subsequent whole body PET/CT. Delayed pelvic PET/CT was obtained in 36 patients. PET/CT was interpreted visually by two observers and SUVmax determined for suspicious lesions. Biopsies were obtained from 13 patients. RESULTS: Biopsies confirmed the presence of cancer in 11 of 13 patients with positive PET for a total of 15 local recurrences in which average SUVmax increased during 14 minutes post injection and marginally decreased in delayed scanning. Conversely inguinal lymph nodes with mild to moderate metabolic activity on PET showed a clearly different pattern with decreasing SUVmax on dynamic images. Three-phase PET/CT contributed to the diagnostic assessment of 10 of 47 patients with biological evidence of recurrence of cancer. It notably allowed the discrimination of confounding blood pool or urinary activity from suspicious hyperactivities. PET/CT was positive in all patients with PSA>or=2 ng/ml (n=34) and in 4/13 patients presenting PSA values<2 ng/ml. CONCLUSION: 18F-fluorocholine 3-phase PET/CT showed a progressively increasing SUVmax in biopsy confirmed cancer lesions up to 14 minutes post injection while decreasing in inguinal lymph nodes interpreted as benign. Furthermore, it was very useful in differentiating local recurrences from confounding blood pool and urinary activity.
Resumo:
Introduction An impaired ability to oxidize fat may be a factor in the obesity's aetiology (3). Moreover, the exercise intensity (Fatmax) eliciting the maximal fat oxidation rate (MFO) was lower in obese (O) compared with lean (L) individuals (4). However, difference in fat oxidation rate (FOR) during exercise between O and L remains equivocal and little is known about FORs during high intensities (>60% ) in O compared with L. This study aimed to characterize fat oxidation kinetics over a large range of intensities in L and O. Methods 12 healthy L [body mass index (BMI): 22.8±0.4] and 16 healthy O men (BMI: 38.9±1.4) performed submaximal incremental test (Incr) to determine whole-body fat oxidation kinetics using indirect calorimetry. After a 15-min resting period (Rest) and 10-min warm-up at 20% of maximal power output (MPO, determined by a maximal incremental test), the power output was increased by 7.5% MPO every 6-min until respiratory exchange ratio reached 1.0. Venous lactate and glucose and plasma concentration of epinephrine (E), norepinephrine (NE), insulin and non-esterified fatty acid (NEFA) were assessed at each step. A mathematical model (SIN) (1), including three variables (dilatation, symmetry, translation), was used to characterize fat oxidation (normalized by fat-free mass) kinetics and to determine Fatmax and MFO. Results FOR at Rest and MFO were not significantly different between groups (p≥0.1). FORs were similar from 20-60% (p≥0.1) and significantly lower from 65-85% in O than in L (p≤0.04). Fatmax was significantly lower in O than in L (46.5±2.5 vs 56.7±1.9 % respectively; p=0.005). Fat oxidation kinetics was characterized by similar translation (p=0.2), significantly lower dilatation (p=0.001) and tended to a left-shift symmetry in O compared with L (p=0.09). Plasma E, insulin and NEFA were significantly higher in L compared to O (p≤0.04). There were no significant differences in glucose, lactate and plasma NE between groups (p≥0.2). Conclusion The study showed that O presented a lower Fatmax and a lower reliance on fat oxidation at high, but not at moderate, intensities. This may be linked to a: i) higher levels of insulin and lower E concentrations in O, which may induce blunted lipolysis; ii) higher percentage of type II and a lower percentage of type I fibres (5), and iii) decreased mitochondrial content (2), which may reduce FORs at high intensities and Fatmax. These findings may have implications for an appropriate exercise intensity prescription for optimize fat oxidation in O. References 1. Cheneviere et al. Med Sci Sports Exerc. 2009 2. Holloway et al. Am J Clin Nutr. 2009 3. Kelley et al. Am J Physiol. 1999 4. Perez-Martin et al. Diabetes Metab. 2001 5. Tanner et al. Am J Physiol Endocrinol Metab. 2002
Resumo:
Monoclonal antibodies (Mab) directed against distinct epitopes of the human 240 kD melanoma-associated antigen have been evaluated for their capacity to localize in human melanoma grafted into nude mice. A favorable tumor to normal tissue ratio of 13 was obtained with intact 131I-labeled MAb Me1-14. This ratio was further increased to 43 and 23 by the use of F(ab')2 and Fab fragments, respectively. The specificity of tumor localization was demonstrated by the simultaneous injection of F(ab')2 fragments from MAb Me1-14 and anti-CEA MAb 35, each labeled with a different iodine isotope, into nude mice grafted with a melanoma and colon carcinoma. The fragments from both MAb localized with perfect selectivity in their relevant tumor as shown by differential whole body scanning and by direct measurement of the two isotopes in tumors and normal tissues. These in vivo experimental results suggest that the F(ab')2 fragment from MAb Me1-14 is suitable for melanoma detection by immunoscintigraphy in patients.