542 resultados para VACANCIES
Resumo:
It is crucial to develop a catalyst made of earth-abundant elements highly active for a complete oxidation of methane at a relatively low temperature. NiCo2O4 consisting of earth-abundant elements which can completely oxidize methane in the temperature range of 350-550 °C. Being a cost-effective catalyst, NiCo2O4 exhibits activity higher than precious-metal-based catalysts. Here we report that the higher catalytic activity at the relatively low temperature results from the integration of nickel cations, cobalt cations and surface lattice oxygen atoms/oxygen vacancies at the atomic scale. In situ studies of complete oxidation of methane on NiCo2O4 and theoretical simulations show that methane dissociates to methyl on nickel cations and then couple with surface lattice oxygen atoms to form -CH3O with a following dehydrogenation to -CH2O; a following oxidative dehydrogenation forms CHO; CHO is transformed to product molecules through two different sub-pathways including dehydrogenation of OCHO and CO oxidation.
Resumo:
Preface Extract: This research was commissioned and funded by Community Care as part of our Stand Up For Social Work campaign. Previous surveys of readers had suggested caseloads, vacancies and stress levels were all on the increase. Community Care decided to do a more scientific examination of burnout on a large scale to assess the real impact of budget cuts and increasing demand on social workers across the UK.
Resumo:
The present PhD work aims the research and development of materials that exhibit multiferroic properties, in particular having a significant interaction between ferromagnetism and ferroelectricity; either directly within an intrinsic single phase or by combining extrinsic materials, achieving the coupling of properties through mechanic phenomena of the respective magnetostriction and piezoelectricity. These hybrid properties will allow the cross modification of magnetic and electric polarization states by the application of cross external magnetic and/or electric fields, giving way to a vast area for scientific investigation and potential technological applications in a new generation of electronic devices, such as computer memories, signal processing, transducers, sensors, etc. Initial experimental work consisted in chemical synthesis of nano powders oxides by urea pyrolysis method: A series of ceramic bulk composites with potential multiferroic properties comprised: of LuMnO3 with La0.7Sr0.3MnO3 and BaTiO3 with La0.7Ba0.3MnO3; and a series based on the intrinsic multiferroic LuMn1-zO3 phase modified with of Manganese vacancies. The acquisition of a new magnetron RF sputtering deposition system, in the Physics Department of Aveiro University, contributed to the proposal of an analogous experimental study in multiferroic thin films and multilayer samples. Besides the operational debut of this equipment several technical upgrades were completed like: the design and construction of the heater electrical contacts; specific shutters and supports for the magnetrons and for the substrate holder and; the addition of mass flow controllers, which allowed the introduction of N2 or O2 active atmosphere in the chamber; and the addition of a second RF generator, enabling co-deposition of different targets. Base study of the deposition conditions and resulting thin films characteristics in different substrates was made from an extensive list of targets. Particular attention was given to thin film deposition of magnetic phases La1-xSrxMnO3, La1-xBaxMnO3 and Ni2+x-yMn1-xGa1+y alloy, from the respective targets: La0.7Sr0.3MnO3, La0.7Ba0.3MnO3; and NiGa with NiMn. Main structural characterization of samples was performed by conventional and high resolution X-Ray Diffraction (XRD); chemical composition was determined by Electron Dispersion Spectroscopy (EDS); magnetization measurements recur to a Vibrating Sample Magnetometer (VSM) prototype; and surface probing (SPM) using Magnetic-Force (MFM) and Piezo-Response (PFM) Microscopy. Results clearly show that the composite bulk samples (LuM+LSM and BTO+LBM) feat the intended quality objectives in terms of phase composition and purity, having spurious contents below 0.5 %. SEM images confirm compact grain packaging and size distribution around the 50 nm scale. Electric conductivity, magnetization intensity and magneto impedance spreading response are coherent with the relative amount of magnetic phase in the sample. The existence of coupling between the functional phases is confirmed by the Magnetoelectric effect measurements of the sample “78%LuM+22%LSM” reaching 300% of electric response for 1 T at 100 kHz; while in the “78%BTO+22%LBM” sample the structural transitions of the magnetic phase at ~350 K result in a inversion of ME coefficient the behavior. A functional Magneto-Resistance measurement system was assembled from the concept stage until the, development and operational status; it enabled to test samples from 77 to 350 K, under an applied magnetic field up to 1 Tesla with 360º horizontal rotation; this system was also designed to measure Hall effect and has the potential to be further upgraded. Under collaboration protocols established with national and international institutions, complementary courses and sample characterization studies were performed using Magneto-Resistance (MR), Magneto-Impedance (MZ) and Magneto-Electric (ME) measurements; Raman and X-ray Photoelectron Spectroscopy (XPS); SQUID and VSM magnetization; Scanning Electron Microscopy (SEM) and Rutherford Back Scattering (RBS); Scan Probe Microscopy (SPM) with Band Excitation Probe Spectroscopy (BEPS); Neutron Powder Diffraction (NPD) and Perturbed Angular Correlations (PAC). Additional collaboration in research projects outside the scope of multiferroic materials provided further experience in sample preparation and characterization techniques, namely VSM and XPS measurements were performed in cubane molecular complex compounds and enable to identify the oxidation state of the integrating cluster of Ru ions; also, XRD and EDS/SEM analysis of the acquired targets and substrates implied the devolution of some items not in conformity with the specifications. Direct cooperation with parallel research projects regarding multiferroic materials, enable the assess to supplementary samples, namely a preliminary series of nanopowder Y1-x-yCaxØyMn1O3 and of Eu0.8Y0.2MnO3, a series of micropowder composites of LuMnO3 with La0.625Sr0.375MnO3 and of BaTiO3 with hexagonal ferrites; mono and polycrystalline samples of Pr1-xCaxMnO3, La1-xSrxMnO3 and La1-xCaxMnO3.
Resumo:
K0.5Na0.5NbO3 (KNN), is the most promising lead free material for substituting lead zirconate titanate (PZT) which is still the market leader used for sensors and actuators. To make KNN a real competitor, it is necessary to understand and to improve its properties. This goal is pursued in the present work via different approaches aiming to study KNN intrinsic properties and then to identify appropriate strategies like doping and texturing for designing better KNN materials for an intended application. Hence, polycrystalline KNN ceramics (undoped, non-stoichiometric; NST and doped), high-quality KNN single crystals and textured KNN based ceramics were successfully synthesized and characterized in this work. Polycrystalline undoped, non-stoichiometric (NST) and Mn doped KNN ceramics were prepared by conventional ceramic processing. Structure, microstructure and electrical properties were measured. It was observed that the window for mono-phasic compositions was very narrow for both NST ceramics and Mn doped ceramics. For NST ceramics the variation of A/B ratio influenced the polarization (P-E) hysteresis loop and better piezoelectric and dielectric responses could be found for small stoichiometry deviations (A/B = 0.97). Regarding Mn doping, as compared to undoped KNN which showed leaky polarization (P-E) hysteresis loops, B-site Mn doped ceramics showed a well saturated, less-leaky hysteresis loop and a significant properties improvement. Impedance spectroscopy was used to assess the role of Mn and a relation between charge transport – defects and ferroelectric response in K0.5Na0.5NbO3 (KNN) and Mn doped KNN ceramics could be established. At room temperature the conduction in KNN which is associated with holes transport is suppressed by Mn doping. Hence Mn addition increases the resistivity of the ceramic, which proved to be very helpful for improving the saturation of the P-E loop. At high temperatures the conduction is dominated by the motion of ionized oxygen vacancies whose concentration increases with Mn doping. Single crystals of potassium sodium niobate (KNN) were grown by a modified high temperature flux method. A boron-modified flux was used to obtain the crystals at a relatively low temperature. XRD, EDS and ICP analysis proved the chemical and crystallographic quality of the crystals. The grown KNN crystals exhibit higher dielectric permittivity (29,100) at the tetragonal-to-cubic phase transition temperature, higher remnant polarization (19.4 μC/cm2) and piezoelectric coefficient (160 pC/N) when compared with the standard KNN ceramics. KNN single crystals domain structure was characterized for the first time by piezoforce response microscopy. It could be observed that <001> - oriented potassium sodium niobate (KNN) single crystals reveal a long range ordered domain pattern of parallel 180° domains with zig-zag 90° domains. From the comparison of KNN Single crystals to ceramics, It is argued that the presence in KNN single crystal (and absence in KNN ceramics) of such a long range order specific domain pattern that is its fingerprint accounts for the improved properties of single crystals. These results have broad implications for the expanded use of KNN materials, by establishing a relation between the domain patterns and the dielectric and ferroelectric response of single crystals and ceramics and by indicating ways of achieving maximised properties in KNN materials. Polarized Raman analysis of ferroelectric potassium sodium niobate (K0.5Na0.5)NbO3 (KNN) single crystals was performed. For the first time, an evidence is provided that supports the assignment of KNN single crystals structure to the monoclinic symmetry at room temperature. Intensities of A′, A″ and mixed A′+A″ phonons have been theoretically calculated and compared with the experimental data in dependence of crystal rotation, which allowed the precise determination of the Raman tensor coefficients for (non-leaking) modes in monoclinic KNN. In relation to the previous literature, this study clarifies that assigning monoclinic phase is more suitable than the orthorhombic one. In addition, this study is the basis for non-destructive assessments of domain distribution by Raman spectroscopy in KNN-based lead-free ferroelectrics with complex structures. Searching a deeper understanding of the electrical behaviour of both KNN single crystal and polycrystalline materials for the sake of designing optimized KNN materials, a comparative study at the level of charge transport and point defects was carried out by impedance spectroscopy. KNN single crystals showed lower conductivity than polycrystals from room temperature up to 200 ºC, but above this temperature polycrystalline KNN displays lower conductivity. The low temperature (T < 200 ºC) behaviour reflects the different processing conditions of both ceramics and single crystals, which account for less defects prone to charge transport in the case of single crystals. As temperature increases (T > 200 ºC) single crystals become more conductive than polycrystalline samples, in which grain boundaries act as barriers to charge transport. For even higher temperatures the conductivity difference between both is increased due to the contribution of ionic conduction in single crystals. Indeed the values of activation energy calculated to the high temperature range (T > 300 ºC) were 1.60 and 0.97 eV, confirming the charge transport due to ionic conduction and ionized oxygen vacancies in single crystals and polycrystalline KNN, respectively. It is suggested that single crystals with low defects content and improved electromechanical properties could be a better choice for room temperature applications, though at high temperatures less conductive ceramics may be the choice, depending on the targeted use. Aiming at engineering the properties of KNN polycrystals towards the performance of single crystals, the preparation and properties study of (001) – oriented (K0.5Na0.5)0.98Li0.02NbO3 (KNNL) ceramics obtained by templated grain growth (TGG) using KNN single crystals as templates was undertaken. The choice of KNN single crystals templates is related with their better properties and to their unique domain structure which were envisaged as a tool for templating better properties in KNN ceramics too. X-ray diffraction analysis revealed for the templated ceramics a monoclinic structure at room temperature and a Lotgering factor (f) of 40% which confirmed texture development. These textured ceramics exhibit a long range ordered domain pattern consisting of 90º and 180º domains, similar to the one observed in the single crystals. Enhanced dielectric (13017 at TC), ferroelectric (2Pr = 42.8 μC/cm2) and piezoelectric (d33 = 280 pC/N) properties are observed for textured KNNL ceramics as compared to the randomly oriented ones. This behaviour is suggested to be due to the long range ordered domain patterns observed in the textured ceramics. The obtained results as compared with the data previously reported on texture KNN based ceramics confirm that superior properties were found due to ordered repeated domain pattern. This study provides an useful approach towards properties improvement of KNN-based piezoelectric ceramics. Overall, the present results bring a significant contribution to the pool of knowledge on the properties of sodium potassium niobate materials: a relation between the domain patterns and di-, ferro-, and piezo-electric response of single crystals and ceramics was demonstrated and ways of engineering maximised properties in KNN materials, for example by texturing were established. This contribution is envisaged to have broad implications for the expanded use of KNN over the alternative lead-based materials.
Resumo:
Niobium oxides have been pointed as an alternative to tantalum in the production of solid electrolytic capacitors, with advantages regarding the dielectric constant, density and price. In this work, it is intended to create a new family of niobium oxides based capacitors, adapting the technology and production line currently used with tantalum. Despite the known potentialities of niobium oxides, and many types of niobates, in several technological applications, the understanding of these oxide systems is still noticeably insufficient. Hence, a careful bibliographic review is shown, which evidences the complexity of these materials, the difficulty in identifying of their different phases and polymorphs, as well as in the interpretation of their properties. In this context, several fundamental studies on niobium oxides are presented, namely structural, microstructural, optical and electrical characterizations, which allow not only to contribute in an important way for the general knowledge of the physical properties of these materials, but also to advance to a sustained development of the niobium oxides based solid electrolytic capacitors. Several processing parameters were studied, clearing the way towards the creation of a prototype. It was also decided to perform a preliminary study on the synthesis and characterization of other oxide systems based in niobium, namely rare-earth orthoniobates (RENbO4), which interest has been related to their optical properties and protonic conductivity. Hence, single and polycrystalline samples of RENbO4 were synthesized and characterized structural, optical and electrically, leaving open an interesting future work.
Resumo:
In the last few years, we have observed an exponential increasing of the information systems, and parking information is one more example of them. The needs of obtaining reliable and updated information of parking slots availability are very important in the goal of traffic reduction. Also parking slot prediction is a new topic that has already started to be applied. San Francisco in America and Santander in Spain are examples of such projects carried out to obtain this kind of information. The aim of this thesis is the study and evaluation of methodologies for parking slot prediction and the integration in a web application, where all kind of users will be able to know the current parking status and also future status according to parking model predictions. The source of the data is ancillary in this work but it needs to be understood anyway to understand the parking behaviour. Actually, there are many modelling techniques used for this purpose such as time series analysis, decision trees, neural networks and clustering. In this work, the author explains the best techniques at this work, analyzes the result and points out the advantages and disadvantages of each one. The model will learn the periodic and seasonal patterns of the parking status behaviour, and with this knowledge it can predict future status values given a date. The data used comes from the Smart Park Ontinyent and it is about parking occupancy status together with timestamps and it is stored in a database. After data acquisition, data analysis and pre-processing was needed for model implementations. The first test done was with the boosting ensemble classifier, employed over a set of decision trees, created with C5.0 algorithm from a set of training samples, to assign a prediction value to each object. In addition to the predictions, this work has got measurements error that indicates the reliability of the outcome predictions being correct. The second test was done using the function fitting seasonal exponential smoothing tbats model. Finally as the last test, it has been tried a model that is actually a combination of the previous two models, just to see the result of this combination. The results were quite good for all of them, having error averages of 6.2, 6.6 and 5.4 in vacancies predictions for the three models respectively. This means from a parking of 47 places a 10% average error in parking slot predictions. This result could be even better with longer data available. In order to make this kind of information visible and reachable from everyone having a device with internet connection, a web application was made for this purpose. Beside the data displaying, this application also offers different functions to improve the task of searching for parking. The new functions, apart from parking prediction, were: - Park distances from user location. It provides all the distances to user current location to the different parks in the city. - Geocoding. The service for matching a literal description or an address to a concrete location. - Geolocation. The service for positioning the user. - Parking list panel. This is not a service neither a function, is just a better visualization and better handling of the information.
Resumo:
In this work parameters of Mg-doped GaN samples were studied using positron annihilation spectroscopy and analyzed. It is shown that gallium vacancies exist in an unintentionally doped sample. Next, the sample with higher concentration of Mg and low growth temperature contains vacancy clusters. In case of low concentration of Mg the growth temperature does not affect the formation of defects. Analog electronics can be replaced by a modern digital device. While promising a high quantity of benefits, the performance of these digitizers requires thorough adjustment. A 14-bit two channel digitizer has been tested in order to achieve better performance than the one of a traditional analog setup, and the adjustment process is described. It has been shown that the digital device is unable to achieve better energy resolution, but it is quite close to the corresponding attribute of the available analog system, which had been used for measurements in Mg-doped GaN.
Resumo:
Over the past several decades, many theories have been advanced as to why efforts to reform the public service have met with only limited success. Clearly, the role of leadership with respect to reform must be examined, since successful organizational leaders should be extremely accomplished in the promotion and protection of the values that underlie decision-making. The issue of effective leadership is particularly significant for the future of the public service of Canada. Large numbers of public servants in the executive ranks are due to retire within the next five years. Given their central role, it is vital that there be enough dedicated and committed public servants to staff future vacancies. It is also essential that future public service leaders possess the competencies and values associated with a world-class public service and, a new type of public organization. Related to this point is the importance of people-management skills. People management in the public service is an issue that has historically faced - and will continue to face - major challenges with respect to recruiting and retaining the leaders it requires for its continued success. It is imperative that the public service not only be revitalized and be seen as an employer of choice, but also that the process by which it accomplishes this goal - the practice of human resource management - be modernized. To achieve the flexibility needed to remain effective, the public service requires the kind ofleadership that supports new public service values such as innovation and which emphasizes a "people- first" approach. This thesis examines the kind of public service leadership needed to modernize the human resource management regime in the federal public service. A historical examination of public service values is presented to help determine the values that are important for public service leaders with respect to modernizing human resource management. Since replenishing the 2 ranks of public service leaders is crucial to ensure the quality of service to Canadians, leadership that supports career planning will be a major focus of this paper. In addition, this thesis demonstrates that while traditional public service values continue to endure, innovative leaders must effectively reconcile new public service values with traditional values in order to increase the possibilities for successful reform as well as achieve business objectives. Much of the thesis is devoted to explaining the crucial role of post-bureaucratic leadership to successful reform. One of the major findings of the thesis is that leaders who demonstrate a blending of new public service values and traditional values are critical to creating effective employment relationships, which are key to modernizing human resource management in the federal public service. It will be apparent that public service leaders must ensure that an appropriate accountability framework is in place before embarking on reform. However, leaders who support new public service values such as innovation and empowerment and who emphasize the importance of people are essential to successful reform.
Resumo:
A room temperature ferromagnetic hysteresis is observed in single crystal strontium titanate substrates as purchased from several manufacturers. It was found that polishing all sides of the substrates removed this observed hysteresis, suggesting that the origin of the ferromagnetic behavior resides on the surface of the substrates. X-ray diffraction and energy dispersive x-ray spectra were measured however they were unable to detect any impurity phases. In similar semiconducting oxides it was previously suggested that ferromagnetism could originate in oxygen vacancies or from disorder within the single crystal. To this end substrates were annealed in both air and vacuum in a range of temperatures (600°C to 1100°G) to both create bulk oxygen vacancies and to heal surface damage. Annealing in vacuum was found to create a measureable number of oxygen vacancies however their creation could not be correlated to the ferromagnetic signal of the substrate. Annealing in air was found to effect the remnant moment of the substrate as well as the width of the x-ray diffraction peaks on the unpolished face, weakly suggesting a relation between surface based disorder and ferromagnetism. Argon ion bombardment was employed to create a layer of surface disorder in the polished crystal, however it was not found to induce ferromagnetism. It was found that acid etching was sufficient to remove the ferromagnetism from as purchased samples and similarly simulated handling with stainless steel tweezers was sufficient to re-create the ferromagnetism. It is suggested that the origin of this ferromagnetism in SrTi03 is surface contaminants (mainly iron).
Resumo:
This paper examines the implications of intergenerational transfers of time and money for labor supply and capital accumulation. Although intergenerational transfers of time in the form of grandparenting are as substantial as monetary transfers in the data, little is known about the role and importance of time transfers. In this paper, we calibrate an overlapping generations model extended to allow for both time and monetary transfers to the US economy. We use simulations to show that time transfers have important positive effects on capital accumulation and that these effects can be as significant as those of monetary transfers. However, while time transfers increase the labor supply of the young, monetary transfers produce an income effect that tends to decrease work effort. We also find that child care tax credits have little impact on parental time and money transfers, but that a universal child tax credit would increase the welfare of the rich while the poor would benefit from a means-tested program.
Resumo:
Nous avons observé une augmentation ‘’transient’’du taux de cristallisation interfacique de l’a-Si lorsqu’on réimplante du Si à proximité de l’interface amorphe/cristal. Après amorphisation et traitement thermique à 650°C pendant 5s de la couche a-Si crée par implantation ionique, une partie a été réimplantée. Les défauts produits par auto-réimplantation à 0.7MeV se trouvent à (302±9) nm de l’interface initiale. Cela nous a permis d’étudier d’avantage la variation initiale de la vitesse SPE (Épitaxie en phase solide). Avec des recuit identiques de 4h à 500°C, nous avons déterminé les positions successives des interfaces et en déduit les taux de cristallisation SPE. La cristallisation débute à l’interface et continue graduellement vers la surface. Après le premier recuit, (252±11) nm s’est recristallisé dans la zone réimplantée soit un avancement SPE de 1.26x10^18at./cm2. Cette valeur est environ 1.50 fois plus importante que celle dans l’état relaxé. Nous suggérons que la présence de défauts à proximité de l’interface a stimulé la vitesse initiale. Avec le nombre de recuit, l’écart entre les vitesses diminue, les deux régions se cristallisent presque à la même vitesse. Les mesures Raman prises avant le SPE et après chaque recuit ont permis de quantifier l’état de relaxation de l’a-Si et le transfert de l’état dé-relaxé à relaxé.
Resumo:
Une sonde électrostatique de Langmuir cylindrique a été utilisée pour caractériser une post-décharge d’un plasma d’ondes de surface de N2-O2 par la mesure de la densité des ions et électrons ainsi que la température des électrons dérivée de la fonction de distribution en énergie des électrons (EEDF). Une densité maximale des électrons au centre de la early afterglow de l’ordre de 1013 m-3 a été déterminée, alors que celle-ci a chuté à 1011 m-3 au début de la late afterglow. Tout au long du profil de la post-décharge, une densité des ions supérieure à celle des électrons indique la présence d’un milieu non macroscopiquement neutre. La post-décharge est caractérisée par une EEDF quasi maxwellienne avec une température des électrons de 0.5±0.1 eV, alors qu’elle grimpe à 1.1 ±0.2 eV dans la early afterglow due à la contribution des collisions vibrationnelles-électroniques (V-E) particulièrement importantes. L’ajout d’O2 dans la décharge principale entraîne un rehaussement des espèces chargées et de la température des électrons suivi d’une chute avec l’augmentation de la concentration d’O2. Le changement de la composition électrique de la post-décharge par la création de NO+ au détriment des ions N2+ est à l’origine du phénomène. Le recours à cette post-décharge de N2 pour la modification des propriétés d’émission optique de nanofils purs de GaN et avec des inclusions d’InGaN a été étudié par photoluminescence (PL). Bien que l’émission provenant des nanofils de GaN et de la matrice de GaN recouvrant les inclusions diminue suite à la création de sites de recombinaison non radiatifs, celle provenant des inclusions d’InGaN augmente fortement. Des mesures de PL par excitation indiquent que cet effet n’est pas attribuable à un changement de l’absorption de la surface de GaN. Ceci suggère un recuit dynamique induit par la désexcitation des métastables de N2 suite à leur collision à la surface des nanofils et la possibilité de passiver les défauts de surface tels que des lacunes d’azote par l’action d’atomes de N2 réactifs provenant de la post-décharge. L’incorporation d’O2 induit les mêmes effets en plus d’un décalage vers le rouge de la bande d’émission des inclusions, suggérant l’action des espèces d’O2 au sein même des nanostructures.
Resumo:
The present work is an attempt to understand the characteristics of high energy ball milling on the structural, electrical and magnetic properties of some normal spinets in the ultra fine regime, Magnetism and magnetic materials have been a fascinating subject for the mankind ever since the discovery of lodestone. Since then, man has been applying this principle of magnetism to build devices for various applications. Magnetism can be classified broadly into five categories. They are diamagnetic, paramagnetic, ferromagnetic antiferromagnetic and ferrimagnetic. Of these, ferro and ferri magnetic materials assume great commercial importance due to their unique properties like appropriate magnetic characteristics, high resistivity and low eddy current losses. The emergence of nanoscience and nanotechnology during the last decade had its impact in the field of magnetism and magnetic materials too. Now, it is common knowledge that materials synthesized in the nanoregime exhibit novel and superlative properties with respect to their coarser sized counterparts in the micron regime. These studies reveal that dielectric properties can be varied appreciably by high-energy ball milling in nanosized zinc ferrites produced by coprecipitation method. A semi conducting behaviour was observed in these materials with the Oxygen vacancies acting as the main charge carrier for conduction, which was produced at the time of coprecipitation and milling. Thus through this study, it was possible to successfully investigate the finite size effects on the structural, electrical and magnetic properties of normal spinels in the ultra fine regime