989 resultados para Tracking errors


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: Proposing an image reconstruction technique, algebraic reconstruction technique-refraction correction (ART-rc). The proposed method takes care of refractive index mismatches present in gel dosimeter scanner at the boundary, and also corrects for the interior ray refraction. Polymer gel dosimeters with high dose regions have higher refractive index and optical density compared to the background medium, these changes in refractive index at high dose results in interior ray bending. Methods: The inclusion of the effects of refraction is an important step in reconstruction of optical density in gel dosimeters. The proposed ray tracing algorithm models the interior multiple refraction at the inhomogeneities. Jacob's ray tracing algorithm has been modified to calculate the pathlengths of the ray that traverses through the higher dose regions. The algorithm computes the length of the ray in each pixel along its path and is used as the weight matrix. Algebraic reconstruction technique and pixel based reconstruction algorithms are used for solving the reconstruction problem. The proposed method is tested with numerical phantoms for various noise levels. The experimental dosimetric results are also presented. Results: The results show that the proposed scheme ART-rc is able to reconstruct optical density inside the dosimeter better than the results obtained using filtered backprojection and conventional algebraic reconstruction approaches. The quantitative improvement using ART-rc is evaluated using gamma-index. The refraction errors due to regions of different refractive indices are discussed. The effects of modeling of interior refraction in the dose region are presented. Conclusions: The errors propagated due to multiple refraction effects have been modeled and the improvements in reconstruction using proposed model is presented. The refractive index of the dosimeter has a mismatch with the surrounding medium (for dry air or water scanning). The algorithm reconstructs the dose profiles by estimating refractive indices of multiple inhomogeneities having different refractive indices and optical densities embedded in the dosimeter. This is achieved by tracking the path of the ray that traverses through the dosimeter. Extensive simulation studies have been carried out and results are found to be matching that of experimental results. (C) 2015 American Association of Physicists in Medicine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There has been a lot of work in the literature, related to the mapping of boundaries of regions, using multiple agents. Most of these are based on optimization techniques or rely on potential fields to drive the agents towards the boundary and then retain them there while they space out evenly along the perimeter or surface (in two-dimensional and three-dimensional cases, respectively). In this paper an algorithm to track the boundary of a region in space is provided based on the cyclic pursuit scheme. This enables the agents to constantly move along the perimeter in a cluster, thereby tracking a dynamically changing boundary. The trajectories of the agents provide a sketch of the boundary. The use of multiple agents may facilitate minimization of tracking error by providing accurate estimates of points on the boundary, besides providing redundancy. Simulation results are provided to highlight the performance of the proposed scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Minimizing energy consumption is of utmost importance in an energy starved system with relaxed performance requirements. This brief presents a digital energy sensing method that requires neither a constant voltage reference nor a time reference. An energy minimizing loop uses this to find the minimum energy point and sets the supply voltage between 0.2 and 0.5 V. Energy savings up to 1275% over existing minimum energy tracking techniques in the literature is achieved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the problem of intercepting highly maneuverable threats using seeker-less interceptors that operate in the command guidance mode. These systems are more prone to estimation errors than standard seeker-based systems. In this paper, an integrated estimation/guidance (IEG) algorithm, which combines interactive multiple model (IMM) estimator with differential game guidance law (DGL), is proposed for seeker-less interception. In this interception scenario, the target performs an evasive bang-bang maneuver, while the sensor has noisy measurements and the interceptor is subject to acceleration bound. The IMM serves as a basis for the synthesis of efficient filters for tracking maneuvering targets and reducing estimation errors. The proposed game-based guidance law for two-dimensional interception, later extended to three-dimensional interception scenarios, is used to improve the endgame performance of the command-guided seeker-less interceptor. The IMM scheme and an optimal selection of filters, to cater to various maneuvers that are expected during the endgame, are also described. Furthermore, a chatter removal algorithm is introduced, thus modifying the differential game guidance law (modified DGL). A comparison between modified DGL guidance law and conventional proportional navigation guidance law demonstrates significant improvement in miss distance in a pursuer-evader scenario. Simulation results are also presented for varying flight path angle errors. A numerical study is provided which demonstrates the performance of the combined interactive multiple model with game-based guidance law (IMM/DGL). Simulation study is also carried out for combined IMM and modified DGL (IMM/modified DGL) which exhibits the superior performance and viability of the algorithm reducing the chattering phenomenon. The results are illustrated by an extensive Monte Carlo simulation study in the presence of estimation errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the problem of timing recovery for 2-D magnetic recording (TDMR) channels. We develop a timing error model for TDMR channel considering the phase and frequency offsets with noise. We propose a 2-D data-aided phase-locked loop (PLL) architecture for tracking variations in the position and movement of the read head in the down-track and cross-track directions and analyze the convergence of the algorithm under non-separable timing errors. We further develop a 2-D interpolation-based timing recovery scheme that works in conjunction with the 2-D PLL. We quantify the efficiency of our proposed algorithms by simulations over a 2-D magnetic recording channel with timing errors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The charge-pump (CP) mismatch current is a dominant source of static phase error and reference spur in the nano-meter CMOS PLL implementations due to its worsened channel length modulation effect. This paper presents a charge-pump (CP) mismatch current reduction technique utilizing an adaptive body bias tuning of CP transistors and a zero CP mismatch current tracking PLL architecture for reference spur suppression. A chip prototype of the proposed circuit was implemented in 0.13 mu m CMOS technology. The frequency synthesizer consumes 8.2 mA current from a 13 V supply voltage and achieves a phase noise of -96.01 dBc/Hz @ 1 MHz offset from a 2.4 GHz RF carrier. The charge-pump measurements using the proposed calibration technique exhibited a mismatch current of less than 0.3 mu A (0.55%) over the VCO control voltage range of 0.3-1.0 V. The closed loop measurements show a minimized static phase error of within +/- 70 ps and a similar or equal to 9 dB reduction in reference spur level across the PLL output frequency range 2.4-2.5 GHz. The presented CP calibration technique compensates for the DC current mismatch and the mismatch due to channel length modulation effect and therefore improves the performance of CP-PLLs in nano-meter CMOS implementations. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multiple initialization based spectral peak tracking (MISPT) technique for heart rate monitoring from photoplethysmography (PPG) signal. MISPT is applied on the PPG signal after removing the motion artifact using an adaptive noise cancellation filter. MISPT yields several estimates of the heart rate trajectory from the spectrogram of the denoised PPG signal which are finally combined using a novel measure called trajectory strength. Multiple initializations help in correcting erroneous heart rate trajectories unlike the typical SPT which uses only single initialization. Experiments on the PPG data from 12 subjects recorded during intensive physical exercise show that the MISPT based heart rate monitoring indeed yields a better heart rate estimate compared to the SPT with single initialization. On the 12 datasets MISPT results in an average absolute error of 1.11 BPM which is lower than 1.28 BPM obtained by the state-of-the-art online heart rate monitoring algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A ray tracing based path length calculation is investigated for polarized light transport in a pixel space. Tomographic imaging using polarized light transport is promising for applications in optical projection tomography of small animal imaging and turbid media with low scattering. Polarized light transport through a medium can have complex effects due to interactions such as optical rotation of linearly polarized light, birefringence, diattenuation and interior refraction. Here we investigate the effects of refraction of polarized light in a non-scattering medium. This step is used to obtain the initial absorption estimate. This estimate can be used as prior in Monte Carlo (MC) program that simulates the transport of polarized light through a scattering medium to assist in faster convergence of the final estimate. The reflectance for p-polarized (parallel) and s-polarized (perpendicular) are different and hence there is a difference in the intensities that reach the detector end. The algorithm computes the length of the ray in each pixel along the refracted path and this is used to build the weight matrix. This weight matrix with corrected ray path length and the resultant intensity reaching the detector for each ray is used in the algebraic reconstruction (ART) method. The proposed method is tested with numerical phantoms for various noise levels. The refraction errors due to regions of different refractive index are discussed, the difference in intensities with polarization is considered. The improvements in reconstruction using the correction so applied is presented. This is achieved by tracking the path of the ray as well as the intensity of the ray as it traverses through the medium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interactions of turbulence, molecular transport, and energy transport, coupled with chemistry play a crucial role in the evolution of flame surface geometry, propagation, annihilation, and local extinction/re-ignition characteristics of intensely turbulent premixed flames. This study seeks to understand how these interactions affect flame surface annihilation of lean hydrogen-air premixed turbulent flames. Direct numerical simulations (DNSs) are conducted at different parametric conditions with a detailed reaction mechanism and transport properties for hydrogen-air flames. Flame particle tracking (FPT) technique is used to follow specific flame surface segments. An analytical expression for the local displacement flame speed (S-d) of a temperature isosurface is considered, and the contributions of transport, chemistry, and kinematics on the displacement flame speed at different turbulence-flame interaction conditions are identified. In general, the displacement flame speed for the flame particles is found to increase with time for all conditions considered. This is because, eventually all flame surfaces and their resident flame particles approach annihilation by reactant island formation at the end of stretching and folding processes induced by turbulence. Statistics of principal curvature evolving in time, obtained using FPT, suggest that these islands are ellipsoidal on average enclosing fresh reactants. Further examinations show that the increase in S-d is caused by the increased negative curvature of the flame surface and eventual homogenization of temperature gradients as these reactant islands shrink due to flame propagation and turbulent mixing. Finally, the evolution of the normalized, averaged, displacement flame speed vs. stretch Karlovitz number are found to collapse on a narrow band, suggesting that a unified description of flame speed dependence on stretch rate may be possible in the Lagrangian description. (C) 2015 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, sliding mode control-based impact time guidance laws are proposed. Even for large heading angle errors and negative initial closing speeds, the desired impact time is achieved by enforcing a sliding mode on a switching surface designed by using the concepts of collision course and estimated time-to-go. Unlike existing guidance laws, the proposed guidance strategy achieves impact time successfully even when the estimated interception time is greater than the desired impact time. Simulation results are also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Approximately 140 million years ago, the Indian plate separated from Gondwana and migrated by almost 90 degrees latitude to its current location, forming the Himalayan-Tibetan system. Large discrepancies exist in the rate of migration of Indian plate during Phanerozoic. Here we describe a new approach to paleo-latitudinal reconstruction based on simultaneous determination of carbonate formation temperature and delta O-18 of soil carbonates, constrained by the abundances of C-13-O-18 bonds in palaeosol carbonates. Assuming that the palaeosol carbonates have a strong relationship with the composition of the meteoric water, delta O-18 carbonate of palaeosol can constrain paleo-latitudinal position. Weighted mean annual rainfall delta O-18 water values measured at several stations across the southern latitudes are used to derive a polynomial equation: delta(18)Ow = -0.006 x (LAT)(2) - 0.294 x (LAT) - 5.29 which is used for latitudinal reconstruction. We use this approach to show the northward migration of the Indian plate from 46.8 +/- 5.8 degrees S during the Permian (269 M. y.) to 30 +/- 11 degrees S during the Triassic (248 M. y.), 14.7 +/- 8.7 degrees S during the early Cretaceous (135 M. y.), and 28 +/- 8.8 degrees S during the late Cretaceous ( 68 M. y.). Soil carbonate delta O-18 provides an alternative method for tracing the latitudinal position of Indian plate in the past and the estimates are consistent with the paleo-magnetic records which document the position of Indian plate prior to 135 +/- 3 M. y.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Displacement estimation is a key step in the evaluation of tissue elasticity by quasistatic strain imaging. An efficient approach may incorporate a tracking strategy whereby each estimate is initially obtained from its neighbours' displacements and then refined through a localized search. This increases the accuracy and reduces the computational expense compared with exhaustive search. However, simple tracking strategies fail when the target displacement map exhibits complex structure. For example, there may be discontinuities and regions of indeterminate displacement caused by decorrelation between the pre- and post-deformation radio frequency (RF) echo signals. This paper introduces a novel displacement tracking algorithm, with a search strategy guided by a data quality indicator. Comparisons with existing methods show that the proposed algorithm is more robust when the displacement distribution is challenging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we describe models and algorithms for detection and tracking of group and individual targets. We develop two novel group dynamical models, within a continuous time setting, that aim to mimic behavioural properties of groups. We also describe two possible ways of modeling interactions between closely using Markov Random Field (MRF) and repulsive forces. These can be combined together with a group structure transition model to create realistic evolving group models. We use a Markov Chain Monte Carlo (MCMC)-Particles Algorithm to perform sequential inference. Computer simulations demonstrate the ability of the algorithm to detect and track targets within groups, as well as infer the correct group structure over time. ©2008 IEEE.