877 resultados para Stick-slip chaos
Resumo:
An algorithm for suppressing the chaotic oscillations in non-linear dynamical systems with singular Jacobian matrices is developed using a linear feedback control law based upon the Lyapunov-Krasovskii (LK) method. It appears that the LK method can serve effectively as a generalised method for the suppression of chaotic oscillations for a wide range of systems. Based on this method, the resulting conditions for undisturbed motions to be locally or globally stable are sufficient and conservative. The generalized Lorenz system and disturbed gyrostat equations are exemplified for the validation of the proposed feedback control rule. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Former colonies and dependencies in the South Pacific do not have the luxury of entirely ‘homegrown’ laws. Their legal systems are burdened with a ‘legacy’ of transplanted laws, developed for use in a foreign country, imposed on pre-existing systems of custom and culture. As a result, many small island countries are struggling to balance the demands of law from different sources, designed to operate in fundamentally different circumstances. In addition to the conflict that occurs in areas of substantive law, where customary and introduced law may prescribe a different rule for the same situation, the two systems differ in their approach to procedure, penalties and relief. This paper considers the divide between the theory and practice of introduced law and customary law and examines the way in which conflicts have been dealt with by the courts. In particular, it uses the example of banishment to illustrate the type of problems that arise in a plural system. The paper looks at the balancing exercise which has been necessary when custom, in the form of banishment, comes into conflict with introduced law, in the form of constitutional rights.
Resumo:
This work presents closed form solutions for fully developed temperature distribution and entropy generation due to forced convection in microelectromechanical systems (MEMS) in the Slip-flow regime, for which the Knudsen number lies within the range 0.001
Resumo:
MICE (meetings, incentives, conventions, and exhibitions), has generated high foreign exchange revenue for the economy worldwide. In Thailand, MICE tourists are recognized as ‘quality’ visitors, mainly because of their high-spending potential. Having said that, Thailand’s MICE sector has been influenced by a number of crises following September 11, 2001. Consequently, professionals in the MICE sector must be prepared to deal with such complex phenomena of crisis that might happen in the future. While a number of researches have examined the complexity of crises in the tourism context, there has been little focus on such issues in the MICE sector. As chaos theory provides a particularly good model for crisis situations, it is the aim of this paper to propose a chaos theory-based approach to the understanding of complex and chaotic system of the MICE sector in time of crisis.
Resumo:
Human resource management (HRM) is now being seen as a strategic activity. This recognises that change processes must include the management of human resources as part of an integrated approach to strategy. Without also linking management development and business strategy, change will not stick and organisations will not develop. Contributing to the debate about integrating HR and other strategies, including linking management development and business strategy, this paper develops a new Generic Management Typology of co-existing management philosophies in order to help change agents diagnose the culture of an organisation and to modify that culture. The typology is derived from reflecting on research about the global transformation of public service organisations over the last twenty-five years.
Resumo:
A theoretical model for the transport phenomena in an air gap membrane distillation is presented. The model is based on the conservation equations for the mass, momentum, energy and species within the feed water solution as well as on the mass and energy balances on the membrane sides. The slip flow occurs due to the hydrophobic properties of the membrane. The slip boundary condition applied on the feed saline solution-membrane interface is taken into consideration showing its effects on process parameters particularly permeate flow, heat transfer coefficient and thermal efficiency. The theoretical model was validated with available experimental data and was found to be in good agreement especially when the slip condition is introduced. Increasing slip length from zero to 200 μm was found to increase the permeate flux and the thermal efficiency by 33% and 1.7% respectively.
Resumo:
Control of spatiotemporal chaos is achieved in the catalytic oxidation of CO on Pt(110) by localized modification of the kinetic properties of the surface chemical reaction. In the experiment, a small temperature heterogeneity is created on the surface by a focused laser beam. This heterogeneity constitutes a pacemaker and starts to emit target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos that is present in the absence of control. We compare this experimental result with a numerical study of the Krischer-Eiswirth-Ertl model for CO oxidation on Pt(110). We confirm the experimental findings and identify regimes where complete and partial controls are possible.
Resumo:
Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source.
Resumo:
The simulated classical dynamics of a small molecule exhibiting self-organizing behavior via a fast transition between two states is analyzed by calculation of the statistical complexity of the system. It is shown that the complexity of molecular descriptors such as atom coordinates and dihedral angles have different values before and after the transition. This provides a new tool to identify metastable states during molecular self-organization. The highly concerted collective motion of the molecule is revealed. Low-dimensional subspaces dynamics is found sensitive to the processes in the whole, high-dimensional phase space of the system. © 2004 Wiley Periodicals, Inc.