970 resultados para Spin field theories


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transverse spin relaxation rates of water protons in articular cartilage and tendon depend on the orientation of the tissue relative to the applied static magnetic field. This complicates the interpretation of magnetic resonance images of these tissues. At the same time, relaxation data can provide information about their organisation and microstructure. We present a theoretical analysis of the anisotropy of spin relaxation of water protons observed in fully hydrated cartilage. We demonstrate that the anisotropy of transverse relaxation is due almost entirely to intramolecular dipolar coupling modulated by a specific mode of slow molecular motion: the diffusion of water molecules in the hydration shell of a collagen fibre around the fibre, such that the molecular director remains perpendicular to the fibre. The theoretical anisotropy arising from this mechanism follows the “magic-angle” dependence observed in magnetic-resonance measurements of cartilage and tendon and is in good agreement with the available experimental results. We discuss the implications of the theoretical findings for MRI of ordered collagenous tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A contentious issue in the field of destination marketing has been the recent tendency by some authors to refer to destination marketing organisations (DMOs) as destination management organisations. This nomenclature infers control over destination resources, a level of influence that is in reality held by few DMOs. This issue of a lack of control over the destination ‘amalgam’ is acknowledged by a number of the contributors, including the editors and the discussion on destination competitiveness by J.R. Brent Ritchie and Geoffrey Crouch, and is perhaps best summed up by Alan Fyall in the concluding chapter: “...unless all elements are owned by the same body, then the ability to control and influence the direction, quality and development of the destination pose very real challenges’ (p. 343). The title of the text acknowledges both marketing and management, in relation to theories and applications. While there are insightful propositions about ideals of destination management, readers will find there is a lack of coverage of destination management in practise by DMOs. This represents fertile ground for future research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Field-effect transistors (FETs) fabricated from undoped and Co2+-doped CdSe colloidal nanowires show typical n-channel transistor behaviour with gate effect. Exposed to microscope light, a 10 times current enhancement is observed in the doped nanowire-based devices due to the significant modification of the electronic structure of CdSe nanowires induced by Co2+-doping, which is revealed by theoretical calculations from spin-polarized plane-wave density functional theory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polymeric graphitic carbon nitride materials have attracted increasing attention in recent years owning to their potential applications in energy conversion, environment protection, and so on. Here, from first-principles calculations, we report the electronic structure modification of graphitic carbon nitride (g-C3N4) in response to carbon doping. We showed that each dopant atom can induce a local magnetic moment of 1.0 μB in non-magnetic g-C3N4. At the doping concentration of 1/14, the local magnetic moments of the most stable doping configuration which has the dopant atom at the center of heptazine unit prefer to align in a parallel way leading to long-range ferromagnetic (FM) ordering. When the joint N atom is replaced by C atom, the system favors an antiferromagnetic (AFM) ordering at unstrained state, but can be tuned to ferromagnetism (FM) by applying biaxial tensile strain. More interestingly, the FM state of the strained system is half-metallic with abundant states at the Fermi level in one spin channel and a band gap of 1.82 eV in another spin channel. The Curie temperature (Tc) was also evaluated using a mean-field theory and Monte Carlo simulations within the Ising model. Such tunable electron spin-polarization and ferromagnetism are quite promising for the applications of graphitic carbon nitride in spintronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Literacy Theories for the Digital Age insightfully brings together six essential approaches to literacy research and educational practice. The book provides powerful and accessible theories for readers, including Socio-cultural, Critical, Multimodal, Socio-spatial, Socio-material and Sensory Literacies. The brand new Sensory Literacies approach is an original and visionary contribution to the field, coupled with a provocative foreword from leading sensory anthropologist David Howes. This dynamic collection explores a legacy of literacy research while showing the relationships between each paradigm, highlighting their complementarity and distinctions. This highly relevant compendium will inspire readers to explore new frontiers of thought and practice in times of diversity and technological change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charge transport properties in organic semiconductors depend strongly on molecular order. Here we demonstrate field-effect transistors where drain current flows through a precisely defined array of nanostripes made of crystalline and highly ordered molecules. The molecular stripes are fabricated across the channel of the transistor by a stamp-assisted deposition of the molecular semiconductors from a solution. As the solvent evaporates, the capillary forces drive the solution to form menisci under the stamp protrusions. The solute precipitates only in the regions where the solution is confined by the menisci once the critical concentration is reached and self-organizes into molecularly ordered stripes 100-200 nm wide and a few monolayers high. The charge mobility measured along the stripes is 2 orders of magnitude larger than the values measured for spin-coated thin films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ligands G1- and G2-oligo (benzyl ether) (PBE) dendrons and their iron(II) complexes [Fe(Gn-PBE)3]A2·xH2O (with n = 1, 2 and A = triflate, tosylate) were prepared. The magnetic properties of the complexes were investigated by a SQUID magnetometer. All complexes exhibit gradual spin transition below room temperature. At very low temperatures the magnetic behaviour reflects zero-field splitting (ZFS) effects. 57Fe-Mössbauer spectroscopy was performed to distinguish between ZFS of high spin species and spin state conversion into the low spin state. Further characterisation was carried out by thermogravimetric analysis (TGA) and FT-IR spectroscopy. Structural features have been determined by powder XRD measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the context of the first-year university classroom, this paper develops Vygotsky’s claim that ‘the relations between the higher mental functions were at one time real relations between people’. By taking the main horizontal and hierarchical levels of classroom discourse and dialogue (student-student, student-teacher, teacher-teacher) and marrying these with the possibilities opened up by Laurillard’s conversational framework, we argue that the learning challenge of a ‘troublesome’ threshold concept might be met by a carefully designed sequence of teaching events and experiences for first year students, and we provide a number of strategies that exploit each level of these ‘hierarchies of discourse’. We suggest that an analytical approach to classroom design that embodies these levels of discourse in sequenced dialogic methods could be used by teachers as a strategy to interrogate and adjust teaching-in-practice especially in the first year of university study.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graphitic like layered materials exhibit intriguing electronic structures and thus the search for new types of two-dimensional (2D) monolayer materials is of great interest for developing novel nano-devices. By using density functional theory (DFT) method, here we for the first time investigate the structure, stability, electronic and optical properties of monolayer lead iodide (PbI2). The stability of PbI2 monolayer is first confirmed by phonon dispersion calculation. Compared to the calculation using generalized gradient approximation, screened hybrid functional and spin–orbit coupling effects can not only predicts an accurate bandgap (2.63 eV), but also the correct position of valence and conduction band edges. The biaxial strain can tune its bandgap size in a wide range from 1 eV to 3 eV, which can be understood by the strain induced uniformly change of electric field between Pb and I atomic layer. The calculated imaginary part of the dielectric function of 2D graphene/PbI2 van der Waals type hetero-structure shows significant red shift of absorption edge compared to that of a pure monolayer PbI2. Our findings highlight a new interesting 2D material with potential applications in nanoelectronics and optoelectronics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spin-density maps, deduced from polarized neutron diffraction experiments, for both the pair and chain compounds of the system Mn2+Cu2+ have been reported recently. These results have motivated us to investigate theoretically the spin populations in such alternant mixed-spin systems. In this paper, we report our studies on the one-dimensional ferrimagnetic systems (S-A,S-B)(N) where hi is the number of AB pairs. We have considered all cases in which the spin Sri takes on allowed values in the range I to 7/2 while the spin S-B is held fixed at 1/2. The theoretical studies have been carried out on the isotropic Heisenberg model, using the density matrix renormalization group method. The effect of the magnitude of the larger spin SA On the quantum fluctuations in both A and B sublattices has been studied as a function of the system size N. We have investigated systems with both periodic and open boundary conditions, the latter with a view to understanding end-of-chain effects. The spin populations have been followed as a function of temperature as well as an applied magnetic field. High-magnetic fields are found to lead to interesting re-entrant behavior. The ratio of spin populations P-A-P-B is not sensitive to temperature at low temperatures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cobalt(II) tris(bipyridyl) complex ion encapsulated in zeolite-Y supercages exhibits a thermally driven interconversion between a low-spin and a high-spin state-a phenomenon not observed for this ion either in solid state or in solution. From a comparative study of the magnetism and optical spectroscopy of the encapsulated and unencapsulated complex ion, supported by molecular modeling, such spin behavior is shown to be intramolecular in origin. In the unencapsulated or free state, the [Co(bipy)(3)](2+) ion exhibits a marked trigonal prismatic distortion, but on encapsulation, the topology of the supercage forces it to adopt a near-octahedral geometry. An analysis using the angular overlap ligand field model with spectroscopically derived parameters shows that the geometry does indeed give rise to a low-spin ground state, and suggests a possible scenario for the spin state interconversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the evolution of rotation period and spindown age of a pulsar whose surface magnetic field undergoes a phase of growth. Application of these results to the Crab pulsar strongly indicates that its parameters cannot be accounted for by the field growth theories.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hyperfine interaction parameters reveal differences in the nature of spin-state equilibria in the lighter and heavier rare-earth cobaltites; the crystal-field parameter is lower in the lighter cobaltites. Temperature variation of the quadrupolar coupling constant is also more marked in the lighter rare-earth cobaltites, with NdCoO3 showing evidence for a structural phase transition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The two-dimensional,q-state (q>4) Potts model is used as a testing ground for approximate theories of first-order phase transitions. In particular, the predictions of a theory analogous to the Ramakrishnan-Yussouff theory of freezing are compared with those of ordinary mean-field (Curie-Wiess) theory. It is found that the Curie-Weiss theory is a better approximation than the Ramakrishnan-Yussouff theory, even though the former neglects all fluctuations. It is shown that the Ramakrishnan-Yussouff theory overestimates the effects of fluctuations in this system. The reasons behind the failure of the Ramakrishnan-Yussouff approximation and the suitability of using the two-dimensional Potts model as a testing ground for these theories are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Superconducting and magnetically long-range ordered states were believed to be mutually exclusive phenomena. The discovery of rare-earth compounds in recent years, which exhibit both superconductivity and magnetic ordering (ferromagnetic, antiferromagnetic or sinusoidal), has led to considerable theoretical and experimental work on such systems. In the present article, we give a review of various theoretical models and important experimental results. In the theoretical sections, we start with the Abrikosov-Gorkov pair breaking theory for dilute alloys and discuss its improvement in the work of Müller-Hartmann and Zittartz. Then, in the context of magnetic superconductors, various microscopic theories that have been advanced are presented. These predict re-entrant behaviour in some systems (ferromagnetic superconductors) and coexistence regions in others (particularly antiferromagnetic superconductors). Following this, phenomenological generalized Ginzburg-Landau theories for two kinds of orders (superconducting and magnetic) are presented. A section dealing with renormalization group analysis of phase diagrams in magnetic superconductors is given. In experimental sections, the properties of each rare-earth compounds (ternary as well as some tetranery) are reviewed. These involve susceptibility, heat capacity, resistivity, upper critical field, neutron scattering and magnetic resonance measurements. The anomalous behaviour of the upper critical field of antiferromagnetic superconductors near the Néel temperature is discussed both in theory sections and experimental section for various systems.