946 resultados para SCALAR CURVATURE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A reconfigurable scalar quantiser capable of accepting n-bit input data is presented. The data length n can be varied in the range 1... N-1 under partial-run time reconfiguration, p-RTR. Issues as improvement in throughput using this reconfigurable quantiser of p-RTR against RTR for data of variable length are considered. The quantiser design referred to as the priority quantiser PQ is then compared against a direct design of the quantiser DIQ. It is then evaluated that for practical quantiser sizes, PQ shows better area usage when both are targeted onto the same FPGA. Other benefits are also identified.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns the switching on of two-dimensional time-harmonic scalar waves. We first review the switch-on problem for a point source in free space, then proceed to analyse the analogous problem for the diffraction of a plane wave by a half-line (the ‘Sommerfeld problem’), determining in both cases the conditions under which the field is well-approximated by the solution of the corresponding frequency domain problem. In both cases the rate of convergence to the frequency domain solution is found to be dependent on the strength of the singularity on the leading wavefront. In the case of plane wave diffraction at grazing incidence the frequency domain solution is immediately attained along the shadow boundary after the arrival of the leading wavefront. The case of non-grazing incidence is also considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dispersion of a point-source release of a passive scalar in a regular array of cubical, urban-like, obstacles is investigated by means of direct numerical simulations. The simulations are conducted under conditions of neutral stability and fully rough turbulent flow, at a roughness Reynolds number of Reτ = 500. The Navier–Stokes and scalar equations are integrated assuming a constant rate release from a point source close to the ground within the array. We focus on short-range dispersion, when most of the material is still within the building canopy. Mean and fluctuating concentrations are computed for three different pressure gradient directions (0◦ , 30◦ , 45◦). The results agree well with available experimental data measured in a water channel for a flow angle of 0◦ . Profiles of mean concentration and the three-dimensional structure of the dispersion pattern are compared for the different forcing angles. A number of processes affecting the plume structure are identified and discussed, including: (i) advection or channelling of scalar down ‘streets’, (ii) lateral dispersion by turbulent fluctuations and topological dispersion induced by dividing streamlines around buildings, (iii) skewing of the plume due to flow turning with height, (iv) detrainment by turbulent dispersion or mean recirculation, (v) entrainment and release of scalar in building wakes, giving rise to ‘secondary sources’, (vi) plume meandering due to unsteady turbulent fluctuations. Finally, results on relative concentration fluctuations are presented and compared with the literature for point source dispersion over flat terrain and urban arrays. Keywords Direct numerical simulation · Dispersion modelling · Urban array

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The analytical model proposed by Teixeira, Miranda, and Valente is modified to calculate the gravity wave drag exerted by a stratified flow over a 2D mountain ridge. The drag is found to be more strongly affected by the vertical variation of the background velocity than for an axisymmetric mountain. In the hydrostatic approximation, the corrections to the drag due to this effect do not depend on the detailed shape of the ridge as long as this is exactly 2D. Besides the drag, all the perturbed quantities of the flow at the surface, including the pressure, may be calculated analytically.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral replication occurs within cells, with release (and onward infection) primarily achieved through two alternative mechanisms: lysis, in which virions emerge as the infected cell dies and bursts open; or budding, in which virions emerge gradually from a still living cell by appropriating a small part of the cell membrane. Virus budding is a poorly understood process that challenges current models of vesicle formation. Here, a plausible mechanism for arenavirus budding is presented, building on recent evidence that viral proteins embed in the inner lipid layer of the cell membrane. Experimental results confirm that viral protein is associated with increased membrane curvature, whereas a mathematical model is used to show that localized increases in curvature alone are sufficient to generate viral buds. The magnitude of the protein-induced curvature is calculated from the size of the amphipathic region hypothetically removed from the inner membrane as a result of translation, with a change in membrane stiffness estimated from observed differences in virion deformation as a result of protein depletion. Numerical results are based on experimental data and estimates for three arenaviruses, but the mechanisms described are more broadly applicable. The hypothesized mechanism is shown to be sufficient to generate spontaneous budding that matches well both qualitatively and quantitatively with experimental observations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the horospherical geometry of submanifolds in hyperbolic space. The main result is a formula for the total absolute horospherical curvature of M, which implies, for the horospherical geometry, the analogues of classical inequalities of the Euclidean Geometry. We prove the horospherical Chern-Lashof inequality for surfaces in 3-space and the horospherical Fenchel and Fary-Milnor`s theorems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a rigorous, regularization-independent local quantum field theoretic treatment of the Casimir effect for a quantum scalar field of mass mu not equal 0 which yields closed form expressions for the energy density and pressure. As an application we show that there exist special states of the quantum field in which the expectation value of the renormalized energy-momentum tensor is, for any fixed time, independent of the space coordinate and of the perfect fluid form g(mu,nu)rho with rho > 0, thus providing a concrete quantum field theoretic model of the cosmological constant. This rho represents the energy density associated to a state consisting of the vacuum and a certain number of excitations of zero momentum, i.e., the constituents correspond to lowest energy and pressure p <= 0. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider perturbations in a cosmological model with a small coupling between dark energy and dark matter. We prove that the stability of the curvature perturbation depends on the type of coupling between dark sectors. When the dark energy is of quintessence type, if the coupling is proportional to the dark matter energy density, it will drive the instability in the curvature perturbations: however if the coupling is proportional to the energy density of dark energy, there is room for the stability in the curvature perturbations. When the dark energy is of phantom type, the perturbations are always stable, no matter whether the coupling is proportional to the one or the other energy density. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Path-integral representations for a scalar particle propagator in non-Abelian external backgrounds are derived. To this aim, we generalize the procedure proposed by Gitman and Schvartsman of path-integral construction to any representation of SU(N) given in terms of antisymmetric generators. And for arbitrary representations of SU(N), we present an alternative construction by means of fermionic coherent states. From the path-integral representations we derive pseudoclassical actions for a scalar particle placed in non-Abelian backgrounds. These actions are classically analyzed and then quantized to prove their consistency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The scalar-isoscalar term in the two-pion exchange NN potential is abnormally large and does not respect the hierarchy of effects predicted by chiral perturbation theory. We argue that this anomaly is associated with non-perturbative effects, which are also present in the pi N scalar form factor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new method for characterization and analysis of asphaltic mixtures aggregate particles is reported. By relying on multiscale representation of the particles, curvature estimation, and discriminant analysis for optimal separation of the categories of mixtures, a particularly effective and comprehensive methodology is obtained. The potential of the methodology is illustrated with respect to three important types of particles used in asphaltic mixtures, namely basalt, gabbro, and gravel. The obtained results show that gravel particles are markedly distinct from the other two types of particles, with the gabbro category resulting with intermediate geometrical properties. The importance of each considered measurement in the discrimination between the three categories of particles was also quantified in terms of the adopted discriminant analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Nonlinear Programming algorithm that converges to second-order stationary points is introduced in this paper. The main tool is a second-order negative-curvature method for box-constrained minimization of a certain class of functions that do not possess continuous second derivatives. This method is used to define an Augmented Lagrangian algorithm of PHR (Powell-Hestenes-Rockafellar) type. Convergence proofs under weak constraint qualifications are given. Numerical examples showing that the new method converges to second-order stationary points in situations in which first-order methods fail are exhibited.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

LetQ(4)( c) be a four-dimensional space form of constant curvature c. In this paper we show that the infimum of the absolute value of the Gauss-Kronecker curvature of a complete minimal hypersurface in Q(4)(c), c <= 0, whose Ricci curvature is bounded from below, is equal to zero. Further, we study the connected minimal hypersurfaces M(3) of a space form Q(4)( c) with constant Gauss-Kronecker curvature K. For the case c <= 0, we prove, by a local argument, that if K is constant, then K must be equal to zero. We also present a classification of complete minimal hypersurfaces of Q(4)( c) with K constant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Graham Hall