887 resultados para Robotic Assisted Minimally Invasive Surgery (RAMIS)
Resumo:
The bone-anchored port (BAP) is an investigational implant, which is intended to be fixed on the temporal bone and provide vascular access. There are a number of implants taking advantage of the stability and available room in the temporal bone. These devices range from implantable hearing aids to percutaneous ports. During temporal bone surgery, injuring critical anatomical structures must be avoided. Several methods for computer-assisted temporal bone surgery are reported, which typically add an additional procedure for the patient. We propose a surgical guide in the form of a bone-thickness map displaying anatomical landmarks that can be used for planning of the surgery, and for the intra-operative decision of the implant’s location. The retro-auricular region of the temporal and parietal bone was marked on cone-beam computed tomography scans and tridimensional surfaces displaying the bone thickness were created from this space. We compared this method using a thickness map (n = 10) with conventional surgery without assistance (n = 5) in isolated human anatomical whole head specimens. The use of the thickness map reduced the rate of Dura Mater exposition from 100% to 20% and OPEN ACCESS Materials 2013, 6 5292 suppressed sigmoid sinus exposures. The study shows that a bone-thickness map can be used as a low-complexity method to improve patient’s safety during BAP surgery in the temporal bone.
Resumo:
HYPOTHESIS A previously developed image-guided robot system can safely drill a tunnel from the lateral mastoid surface, through the facial recess, to the middle ear, as a viable alternative to conventional mastoidectomy for cochlear electrode insertion. BACKGROUND Direct cochlear access (DCA) provides a minimally invasive tunnel from the lateral surface of the mastoid through the facial recess to the middle ear for cochlear electrode insertion. A safe and effective tunnel drilled through the narrow facial recess requires a highly accurate image-guided surgical system. Previous attempts have relied on patient-specific templates and robotic systems to guide drilling tools. In this study, we report on improvements made to an image-guided surgical robot system developed specifically for this purpose and the resulting accuracy achieved in vitro. MATERIALS AND METHODS The proposed image-guided robotic DCA procedure was carried out bilaterally on 4 whole head cadaver specimens. Specimens were implanted with titanium fiducial markers and imaged with cone-beam CT. A preoperative plan was created using a custom software package wherein relevant anatomical structures of the facial recess were segmented, and a drill trajectory targeting the round window was defined. Patient-to-image registration was performed with the custom robot system to reference the preoperative plan, and the DCA tunnel was drilled in 3 stages with progressively longer drill bits. The position of the drilled tunnel was defined as a line fitted to a point cloud of the segmented tunnel using principle component analysis (PCA function in MatLab). The accuracy of the DCA was then assessed by coregistering preoperative and postoperative image data and measuring the deviation of the drilled tunnel from the plan. The final step of electrode insertion was also performed through the DCA tunnel after manual removal of the promontory through the external auditory canal. RESULTS Drilling error was defined as the lateral deviation of the tool in the plane perpendicular to the drill axis (excluding depth error). Errors of 0.08 ± 0.05 mm and 0.15 ± 0.08 mm were measured on the lateral mastoid surface and at the target on the round window, respectively (n =8). Full electrode insertion was possible for 7 cases. In 1 case, the electrode was partially inserted with 1 contact pair external to the cochlea. CONCLUSION The purpose-built robot system was able to perform a safe and reliable DCA for cochlear implantation. The workflow implemented in this study mimics the envisioned clinical procedure showing the feasibility of future clinical implementation.
Resumo:
Within the past 15 years, significant advances in the imaging of multiorgan and complex trauma primarily due to the improvement of cross-sectional imaging have resulted in the optimization of the expedient diagnosis and management of the polytrauma patient. At the forefront, multidetector computed tomography (MDCT) has become the cornerstone of modern emergency departments and trauma centers. In many institutions, MDCT is the de facto diagnostic tool upon trauma activation. In the setting of pelvic imaging, MDCT (with its high spatial resolution and sensitivity as well as short acquisition times) allows for rapid identification and assessment of pelvic hemorrhage leading to faster triage and definitive management. In trauma centers throughout the world, angiography and minimally invasive catheter-based embolization techniques performed by interventional radiologists have become the standard of care for patients with acute pelvic trauma and related multiorgan hemorrhage. In an interdisciplinary setting, embolization may be performed either alone or as an adjunct procedure with open or closed reduction and stabilization techniques. A team-based approach involving multiple disciplines (e.g., radiology, traumatology, orthopedic surgery, intensive care medicine) is crucial to monitor and treat the actively bleeding patient appropriately.
Resumo:
The minimally invasive approach for hysterectomy with proven benefits and lower morbidity has become the gold standard, even in women with large uterine masses. Most women with a malignant condition present with abnormal vaginal bleeding and/or suspicious imaging such that few are diagnosed by final histopathology after surgery. However, if a malignancy is not diagnosed preoperatively, intraabdominal morcellation for uterus extraction has an increased risk for potential tumor spread and peritoneal metastases, especially in cases of unexpected leiomyosarcoma. We describe a simple method to wrap the uterus in a contained environment with a plastic bag through the posterior vaginal fornix prior to conventional coring morcellation for vaginal extraction in total laparoscopic hysterectomy. We further describe our experience with a risk stratification and treatment algorithm to implement this procedure in daily routine. A video and an illustrating sketch demonstrate the simplicity and safety of the procedure.
Resumo:
BACKGROUND Sutureless aortic valve replacement (SU-AVR) has emerged as an innovative alternative for treatment of aortic stenosis. By avoiding the placement of sutures, this approach aims to reduce cross-clamp and cardiopulmonary bypass (CPB) duration and thereby improve surgical outcomes and facilitate a minimally invasive approach suitable for higher risk patients. The present systematic review and meta-analysis aims to assess the safety and efficacy of SU-AVR approach in the current literature. METHODS Electronic searches were performed using six databases from their inception to January 2014. Relevant studies utilizing sutureless valves for aortic valve implantation were identified. Data were extracted and analyzed according to predefined clinical endpoints. RESULTS Twelve studies were identified for inclusion of qualitative and quantitative analyses, all of which were observational reports. The minimally invasive approach was used in 40.4% of included patients, while 22.8% underwent concomitant coronary bypass surgery. Pooled cross-clamp and CPB duration for isolated AVR was 56.7 and 46.5 minutes, respectively. Pooled 30-day and 1-year mortality rates were 2.1% and 4.9%, respectively, while the incidences of strokes (1.5%), valve degenerations (0.4%) and paravalvular leaks (PVL) (3.0%) were acceptable. CONCLUSIONS The evaluation of current observational evidence suggests that sutureless aortic valve implantation is a safe procedure associated with shorter cross-clamp and CPB duration, and comparable complication rates to the conventional approach in the short-term.
Resumo:
OBJECTIVES This report summarizes the 5-year clinical and haemodynamic data from three prospective, European multicentre trials with the Perceval sutureless aortic valve. METHODS From April 2007 to August 2012, 731 consecutive patients (mean age: 78.5 years; 68.1% females; mean logistic EuroSCORE 10.9%) underwent AVR with the Perceval valve in 25 European centres. Isolated AVR was performed in 498 (68.1%) patients. A minimally invasive approach was performed in 189 (25.9%) cases. The cumulative follow-up was 729 patients-years. RESULTS In isolated AVR, mean cross-clamp and cardiopulmonary bypass times were 30.8 and 50.8 min in full sternotomy, and 37.6 and 64.4 min in the minimally invasive approach, respectively. Early cardiac-related deaths occurred in 1.9%. Overall survival rates at 1 and 5 years were 92.1 and 74.7%, respectively. Major paravalvular leak occurred in 1.4% and 1% at early and late follow-up, respectively. Significant improvement in clinical status was observed postoperatively in the majority of patients. Mean and peak gradients decreased from 42.9 and 74.0 mmHg preoperatively, to 7.8 and 16 mmHg at the 3-year follow-up. LV mass decreased from 254.5 to 177.4 g at 3 years. CONCLUSIONS This European multicentre experience, with the largest cohort of patients with sutureless valves to date, shows excellent clinical and haemodynamic results that remain stable even up to the 5-year follow-up. Even in this elderly patient cohort with 40% octogenarians, both early and late mortality rates were very low. There were no valve migrations, structural valve degeneration or valve thrombosis in the follow-up. The sutureless technique is a promising alternative to biological aortic valve replacement.
Resumo:
OBJECTIVE Abnormal ECG findings suggestive of cardiac disease are frequent in patients with funnel chest, although structural heart disease is rare. Electrocardiographic characteristics and changes following new surgical treatments in young adults are not described so far. The aim of the study was to analyze electrocardiographic characteristics of patients with funnel chest before and after minimally invasive funnel chest correction by the Nuss procedure. METHODS Twenty-six patients with surgical correction of funnel chest using pectus bar were included. Twelve-lead ECGs before and later than one year after surgery were analyzed. RESULTS In postoperative ECGs, amplitude of P wave in lead II and negative terminal amplitude of P wave in lead V1 decreased from 0.13 to 0.10mV (p=0.03), and from 0.10 to 0.04mV (p<0.001), respectively. Mean QRS duration decreased from 108ms to 98ms (p=0.003) after correction. A pathological left and right Sokolow-Lyon index was observed in 35% and 23% of patients before, versus 8% (p=0.04) and 0% (p=0.01) after correction, respectively. In contrast, the rate of patients with J wave pattern in precordial leads V4-V6 increased from 8% before to 42% after surgery (p=0.004). CONCLUSIONS ECG abnormalities in patients with funnel chest are frequent, and can normalize after surgical correction by the Nuss procedure. De novo J wave pattern in precordial leads V4-V6 is a frequent finding after surgical funnel chest correction using pectus bar.
Resumo:
OBJECTIVES Creation of an atraumatic, hearing-preservation cochleostomy is integral to the future of minimally invasive inner ear surgery. The goal of this study was to develop and characterize a novel chemical approach to cochleostomy. STUDY DESIGN Prospective animal study. SETTING Laboratory. METHODS Experimental animal study in which phosphoric acid gel (PAG) was used to decalcify the otic capsule in 25 Hartley guinea pigs. Five animals in each of 5 surgical groups were studied: (1) mechanically opening the auditory bulla alone, (2) PAG thinning of the basal turn otic capsule, leaving endosteum covered by a layer of bone, (3) micro-pick manual cochleostomy, (4) PAG chemical cochleostomy, exposing the endosteum, and (5) combined PAG/micro-pick cochleostomy, with initial chemical thinning and subsequent manual removal of the last osseous layer. Preoperative and postoperative auditory brainstem responses and otoacoustic emissions were obtained at 2, 6, 10, and 16 kHz. Hematoxylin and eosin-stained paraffin sections were compared. RESULTS Surgical and histologic findings confirmed that application of PAG provided reproducible local bone removal, and cochlear access was enabled. Statistically significant auditory threshold shifts were observed at 10 kHz (P = .048) and 16 kHz (P = .0013) following cochleostomy using PAG alone (group 4) and at 16 kHz using manual cochleostomy (group 3) (P = .028). No statistically significant, postoperative auditory threshold shifts were observed in the other groups, including PAG thinning with manual completion cochleostomy (group 5). CONCLUSION Hearing preservation cochleostomy can be performed in an animal model using a novel technique of thinning cochlear bone with PAG and manually completing cochleostomy.
Resumo:
Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. KEY POINTS Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence.
Resumo:
PURPOSE To evaluate a low-cost, inertial sensor-based surgical navigation solution for periacetabular osteotomy (PAO) surgery without the line-of-sight impediment. METHODS Two commercial inertial measurement units (IMU, Xsens Technologies, The Netherlands), are attached to a patient's pelvis and to the acetabular fragment, respectively. Registration of the patient with a pre-operatively acquired computer model is done by recording the orientation of the patient's anterior pelvic plane (APP) using one IMU. A custom-designed device is used to record the orientation of the APP in the reference coordinate system of the IMU. After registration, the two sensors are mounted to the patient's pelvis and acetabular fragment, respectively. Once the initial position is recorded, the orientation is measured and displayed on a computer screen. A patient-specific computer model generated from a pre-operatively acquired computed tomography scan is used to visualize the updated orientation of the acetabular fragment. RESULTS Experiments with plastic bones (eight hip joints) performed in an operating room comparing a previously developed optical navigation system with our inertial-based navigation system showed no statistically significant difference on the measurement of acetabular component reorientation. In all eight hip joints the mean absolute difference was below four degrees. CONCLUSION Using two commercially available inertial measurement units we show that it is possible to accurately measure the orientation (inclination and anteversion) of the acetabular fragment during PAO surgery and therefore to successfully eliminate the line-of-sight impediment that optical navigation systems have.
Resumo:
OBJECTIVE Vertebroplasty and balloon kyphoplasty are effective treatment options for osteoporotic vertebral compression fractures but are limited in correction of kyphotic deformity. Lordoplasty has been reported as an alternative, cost-effective, minimally invasive, percutaneous cement augmentation technique with good restoration of vertebral body height and alignment. The authors report on its clinical and radiological midterm results. METHODS A retrospective review was conducted of patients treated with lordoplasty from 2002 to 2014. Inclusion criteria were clinical and radiological follow-up evaluations longer than 24 months. Radiographs were accessed regarding initial correction and progressive loss of reduction. Complications and reoperations were recorded. Actual pain level, pain relief immediately after surgery, autonomy, and subjective impression of improvement of posture were assessed by questionnaire. RESULTS Sixty-five patients (46 women, 19 men, age range 38.9-86.2 years old) were treated with lordoplasty for 69 vertebral compression and insufficiency fractures. A significant correction of the vertebral kyphotic angle (mean 13°) and segmental kyphotic angle (mean 11°) over a mean follow-up of 33 months (range 24-108 months) was achieved (p < 0.001). On average, pain was relieved to 90% of the initial pain level. In 24% of the 65 patients a second spinal intervention was necessary: 16 distant (24.6%) and 7 adjacent (10.8%) new osteoporotic fractures, 4 instrumented stabilizations (6.2%), 1 new adjacent traumatic fracture (1.5%), and 1 distant microsurgical decompression (1.5%). Cement leakage occurred in 10.4% but was only symptomatic in 1 case. CONCLUSIONS Lordoplasty appeared safe and effective in midterm pain alleviation and restoration of kyphotic deformity in osteoporotic compression and insufficiency fractures. The outcomes of lordoplasty are consistent with other augmentation techniques.
Resumo:
Nucleus pulposus replacements have been subjected to highly controversial discussions over the last 40 years. Their use has not yet resulted in a positive outcome to treat herniated disc or degenerated disc disease. The main reason is that not a single implant or tissue replacement was able to withstand the loads within an intervertebral disc. Here, we report on the development of a photo-polymerizable poly(ethylene glycol)dimethacrylate nano-fibrillated cellulose composite hydrogel which was tuned according to native tissue properties. Using a customized minimally-invasive medical device to inject and photopolymerize the hydrogel insitu, samples were implanted through an incision of 1 mm into an intervertebral disc of a bovine organ model to evaluate their long-term performance. When implanted into the bovine disc model, the composite hydrogel implant was able to significantly re-establish disc height after surgery (p < 0.0025). The height was maintained after 0.5 million loading cycles (p < 0.025). The mechanical resistance of the novel composite hydrogel material combined with the minimally invasive implantation procedure into a bovine disc resulted in a promising functional orthopedic implant for the replacement of the nucleus pulposus.
Resumo:
Peripheral arteriovenous malformations (AVM) remain most challenging among various congenital vascular malformations to be treated. Here we present three illustrative patients with Yakes type IIIb and type IV AVM at the plantar aspect of the foot who were successfully treated by minimally invasive embolization. The value of the Yakes AVM classification system to guide the therapeutic decision making by directing specific therapeutic procedures to specific AVM types defined by their angioarchitecture is demonstrated. Direct percutaneous AVM puncture with coiling of aneurysmal outflow vein and subsequent ethanol embolization is shown. Finally, the report illustrates that several AVM types can coexist.
Resumo:
Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014
Resumo:
OBJECTIVE Sutureless aortic valve replacement (AVR) offers an alternative to standard AVR in aortic stenosis. This prospective, single-arm study aimed to demonstrate safety and effectiveness of a bovine pericardial sutureless aortic valve at 1 year. METHODS From February 2010 to September 2013, 658 patients (mean age 78.3 ± 5.6 years; 40.0% octogenarian; 64.4% female; mean Society of Thoracic Surgeons score 7.2 ± 7.4) underwent sutureless AVR in 25 European centers. Concomitant cardiac procedures were performed in 29.5% and minimally invasive cardiac surgery in 33.3%. RESULTS One-year site-reported event rates were 8.1% for all-cause mortality, 4.5% for cardiac mortality, 3.0% for stroke, 1.9% for valve-related reoperation, 1.4% for endocarditis, and 0.6% for major paravalvular leak. No valve thrombosis, migration, or structural valve deterioration occurred. New York Heart Association class improved at least 1 level in 77.5% and remained stable (70.4% New York Heart Association class I or II at 1 year). Mean effective orifice area was 1.5 ± 0.4 cm(2); pressure gradient was 9.2 ± 5.0 mm Hg. Left ventricular mass decreased from 138.5 g/m(2) before surgery to 115.3 g/m(2) at 1 year (P < .001). Echocardiographic core laboratory findings confirmed that paravalvular leak was rare and remained stable during follow-up. CONCLUSIONS The Perceval sutureless valve resulted in low 1-year event rates in intermediate-risk patients undergoing AVR. New York Heart Association class improved in more than three-quarters of patients and remained stable. These data support the safety and efficacy to 1 year of the Perceval sutureless valve in this intermediate-risk population.