959 resultados para RU-BASED CATALYSTS
Resumo:
MCF, NbMCF and TaMCF Mesostructured Cellular Foams were used as supports for platinum and silver (1 wt%). Metallic and bimetallic catalysts were prepared by grafting of metal species on APTMS (3-aminopropyltrimethoxysilane) and MPTMS (2-mercaptopropyltrimethoxysilane) functionalized supports. Characterizations by X-ray diffraction (XRD), ultraviolet–visible (UV–Vis) spectroscopy, X-ray photoelectron spectroscopy (XPS), X-ray fluorescence (XRF) spectroscopy, and in situ Fourier Transform Infrared (FTIR) spectroscopy allowed to monitor the oxidation state of metals and surface properties of the catalysts, in particular the formation of bimetallic phases and the strong metal–support interactions. It was evidenced that the functionalization agent (APTMS or MPTMS) influenced the metals dispersion, the type of bimetallic species and Nb/Ta interaction with Pt/Ag. Strong Nb–Ag interaction led to the reduction of niobium in the support and oxidation of silver. MPTMS interacted at first with Pt to form Pt–Ag ensembles highly active in CH3OH oxidation. The effect of Pt particle size and platinum–silver interaction on methanol oxidation was also considered. The nature of the functionalization agent strongly influenced the species formed on the surface during reaction with methanol and determined the catalytic activity and selectivity.
Resumo:
Two new complexes, [MII(L)(Cl)(H2O)2]·H2O (where M=Ni or Ru and L = heterocyclic Schiff base, 3- hydroxyquinoxaline-2-carboxalidene-4-aminoantipyrine), have been synthesized and characterized by elemental analysis, FT-IR, UV–vis diffuse reflectance spectroscopy, FAB-MASS, TG–DTA, AAS, cyclic voltammetry, conductance and magnetic susceptibility measurements. The complexes have a distorted octahedral structure andwere found to be effective catalysts for the hydrogenation of benzene. The influence of several reaction parameters such as reaction time, temperature, hydrogen pressure, concentration of the catalyst and concentration of benzenewas tested. A turnover frequency of 5372 h−1 has been found in the case of ruthenium complex for the reduction of benzene at 80 ◦C with 3.64×10−6 mol catalyst, 0.34 mol benzene and at a hydrogen pressure of 50 bar. In the case of the nickel complex, a turnover frequency of 1718 h−1 has been found for the same reaction with 3.95×10−6 mol catalyst under similar experimental conditions. The nickel complex shows more selectivity for the formation of cyclohexene while the ruthenium complex is more selective for the formation of cyclohexane
Resumo:
Zeolite Y-encapsulated ruthenium(III) complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 1,2- phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYqpd, RuYqap and RuYqab, respectively) and the Schiff bases derived from salicylaldehyde and 1,2-phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYsalpd, RuYsalap and RuYsalab, respectively) have been prepared and characterized. These complexes, except RuYqpd, catalyze catechol oxidation by H2O2 selectively to 1,2,4-trihydroxybenzene. RuYqpd is inactive. A comparative study of the initial rates and percentage conversion of the reaction was done in all cases. Turn over frequency of the catalysts was also calculated. The catalytic activity of the complexes is in the order RuYqap > RuYqab for quinoxaline-based complexes and RuYsalap > RuYsalpd > RuYsalab for salicylidene-based complexes. The reaction is believed to proceed through the formation of a Ru(V) species.
Resumo:
Aquesta tesi doctoral es basa en l'estudi de l'aplicació en catàlisi de dos tipus de complexos organometallics basats en dos metalls de tansició diferents. Concretament s'estudien complexos macrocíclics triolefínics de pal·ladi(0) com a catalitzadors per a les reaccions de Suzuki i Heck, i oxocomplexos carbènics de ruteni(II) com a espècies catalítiques en oxidacions de compostos orgànics. En el cas dels complexos de ruteni s'ha vist que en augmentar el nombre de lligands carbènics en l'esfera de coordinació del metall s'aconseguiex afavorir els processos bielectrònics, obtenint-se catalitzadors més actius i més selectius. En un segon pas, els dos tipus de catalitzadors homogenis s'han immobilitzat sobre la superfície d'un elèctrode mitjançant l'estratègia d'electropolimerització del grup pirrol. Els elèctodes modificats resultants s'han aplicat com a catalitzadors heterogenis. En ambdós casos els catalitzadors heterogenis han mostrat una activitat equiparable o superior a la del sistema homogeni corresponent. Finalment, s'ha assajat una reacció de catàlisi tàndem en què els dos catalitzadors (immobilitzats sobre el mateix elèctrode) actuen en cooperació. S'ha aconseguit realitzar dues transformacions consecutives d'un substat orgànic.
Resumo:
The reaction of TlTp' (Tp' = HB(3-mesitylpyrazolyl)(3)(-) (Tp(Ms)), HB(3-mesitylpyrazolyl)(2)(5-mesitylpyrazolyl)(-) (Tp(Ms)*)) with NiCl(2).6H(2)O affords Tp(Ms)NiCl (1) and Tp(Ms)*NiCl (2) in good yield. The compound 2 undergoes an isomerization process to form [{Tp(Ms)**}NiCl](2) (3) (Tp(Ms)** = HB(5-mesitylpyrazolyl)(2)(3-mesitylpyrazolyl)(-)) in 68% yield. Treatment of the tris(pyrazolyl)-borate nickel compounds 1 and 2 with alkylaluminum cocatalysts such as methylalumoxane (MAO) and trimethylaluminum (TMA) in toluene generates active catalysts for ethylene oligomerization. The compound 1 shows turnover frequencies in the range of (2.2-43.1) x 10(3) h(-1). Oligomerization reaction conditions can be adjusted that lead to selectivities as high as 81% for butene-1.
Resumo:
Pós-graduação em Química - IQ
Resumo:
Zr-Laponite pillared clays were prepared and used as supports of nickel catalysts for the methane reforming reaction with carbon dioxide to synthesis gas. The structural and textural characteristics of supports and catalysts were systematically examined by N-2 adsorption/desorption and X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and transmission electron spectroscopy (TEM) techniques. The catalytic performance and carbon deposition were investigated. It is found that Zr-Laponite pillared clays are promising catalyst supports for carbon dioxide reforming of methane. The pore structure and surface properties of such supports greatly affect the catalytic behaviors of catalysts derived. Carbon deposition on catalysts was also affected by the property and structure of supports. The sintering of nickel metal and zirconia was another factor responsible for catalyst deactivation. This new-type nickel supported catalyst Ni/Zr-Laponite(8), with well-developed porosity, gave a higher initial conversion and a relatively long-term stability, and is therefore a promising catalyst for potential application to carbon dioxide reforming of methane to synthesis gas. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
In order to study the effect of washcoat composition on lean NOx trap (LNT) aging characteristics, fully formulated monolithic LNT catalysts containing varying amounts of La-stabilized CeO2 (5 wt% La2O3) or CeO2-ZrO2 (Ce:Zr = 70:30) were subjected to accelerated aging on a bench reactor. Subsequent catalyst evaluation revealed that aging resulted in deterioration of the NOx storage, NOx release and NOx reduction functions, whereas the observation of lean phase NO2 slip for all of the aged catalysts indicated that LNT performance was not limited by the kinetics of NO oxidation. After aging, all of the catalysts showed increased selectivity to NH3 in the temperature range 250–450 °C. TEM, H2 chemisorption, XPS and elemental analysis data revealed two main changes which can explain the degradation in LNT performance. First, residual sulfur in the catalysts, present as BaSO4, decreased catalyst NOx storage capacity. Second, sintering of the precious metals in the washcoat was observed, which can be expected to decrease the rate of NOx reduction. Additionally, sintering is hypothesized to result in segregation of the precious metal and Ba phases, resulting in less efficient NOx spillover from Pt to Ba during NOx adsorption, as well as decreased rates of reductant spillover from Pt to Ba and reverse NOx spillover during catalyst regeneration. Spectacular improvement in LNT durability was observed for catalysts containing CeO2 or CeO2-ZrO2 relative to their non-ceria containing analog. This was attributed to (i) the ability of ceria to participate in NOx storage/reduction as a supplement to the main Ba NOx storage component; (ii) the fact that Pt and CeO2(-ZrO2) are not subject to phase segregation; and (iii) the ability of ceria to trap sulfur, resulting in decreased sulfur accumulation on the Ba component.
Resumo:
Two new types of phenolic resin-derived synthetic carbons with bi-modal and tri-modal pore-size distributions were used as supports for Pd catalysts. The catalysts were tested in chemoselective hydrogenation and hydrodehalogenation reactions in a compact multichannel flow reactor. Bi-modal and tri-modal micro-mesoporous structures of the synthetic carbons were characterised by N2 adsorption. HR-TEM, PXRD and XPS analyses were performed for characterising the synthesised catalysts. N2 adsorption revealed that tri-modal synthetic carbon possesses a well-developed hierarchical mesoporous structure (with 6.5 nm and 42 nm pores), contributing to a larger mesopore volume than the bi-modal carbon (1.57 cm3 g-1versus 1.23 cm3 g-1). It was found that the tri-modal carbon promotes a better size distribution of Pd nanoparticles than the bi-modal carbon due to presence of hierarchical mesopore limitting the growth of Pd nanoparticles. For all the model reactions investigated, the Pd catalyst based on tri-modal synthetic carbon (Pd/triC) show high activity as well as high stability and reproducibility. The trend in reactivities of different functional groups over the Pd/triC catalyst follows a general order alkyne ≫ nitro > bromo ≫ aldehyde.
Resumo:
Co-Al-Ox mixed metal oxides partially modified with Cu or Mg, as well as Ag were successfully prepared, characterized and evaluated as potential catalysts for the N2O decomposition. The materials were characterized by the following techniques: X-Ray Diffraction, Thermogravimetric Analysis (TGA), N2 Physisorption, Hydrogen Temperature-Programmed Reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS). Ag-modified HT-derived mixed oxides showed enhanced activity compared to the undoped materials, the optimum composition was found for (1 wt.% Ag)CHT-Co3Al. The catalyst characterization studies suggested that the improved catalytic activity of Ag-promoted catalysts were mainly because of the altered redox properties of the materials.
Resumo:
The notion of pedagogy for anyone in the teaching profession is innocuous. The term itself, is steeped in history but the details of the practice can be elusive. What does it mean for an academic to be embracing pedagogy? The problem is not limited to academics; most teachers baulk at the introduction of a pedagogic agenda and resist attempts to have them reflect on their classroom teaching practice, where ever that classroom might be constituted. This paper explores the application of a pedagogic model (Education Queensland, 2001) which was developed in the context of primary and secondary teaching and was part of a schooling agenda to improve pedagogy. As a teacher educator I introduced the model to classroom teachers (Hill, 2002) using an Appreciative Inquiry (Cooperrider and Srivastva 1987) model and at the same time applied the model to my own pedagogy as an academic. Despite being instigated as a model for classroom teachers, I found through my own practitioner investigation that the model was useful for exploring my own pedagogy as a university academic (Hill, 2007, 2008). Cooperrider, D.L. and Srivastva, S. (1987) Appreciative inquiry in organisational life, in Passmore, W. and Woodman, R. (Eds) Research in Organisational Changes and Development (Vol 1) Greenwich, CT: JAI Press. Pp 129-69 Education Queensland (2001) School Reform Longitudinal Study (QSRLS), Brisbane, Queensland Government. Hill, G. (2002, December ) Reflecting on professional practice with a cracked mirror: Productive Pedagogy experiences. Australian Association for Research in Education Conference. Brisbane, Australia. Hill, G. (2007) Making the assessment criteria explicit through writing feedback: A pedagogical approach to developing academic writing. International Journal of Pedagogies and Learning 3(1), 59-66. Hill, G. (2008) Supervising Practice Based Research. Studies in Learning, Evaluation, Innovation and Development, 5(4), 78-87
Resumo:
The concept of sustainable urban development has been pushed to the forefront of policy-making and politics as the world wakes up to the impacts of climate change and the effects of modern urban lifestyles. Today, sustainable development has become a very prominent element in the day-to-day debate on urban policy and the expression of that policy in urban planning and development decisions. As a result of this, during the last few years, sustainable development automation applications such as sustainable urban development decision support systems have become popular tools as they offer new opportunities for local governments to realise their sustainable development agendas. This chapter explores a range of issues associated with the application of information and communication technologies and decision support systems in the process of underpinning sustainable urban development. The chapter considers how information and communication technologies can be applied to enhance urban planning, raise environmental awareness, share decisions and improve public participation. It introduces and explores three web-based geographical information systems projects as best practice. These systems are developed as support tools to include public opinion in the urban planning and development processes, and to provide planners with comprehensive tools for the analysis of sustainable urban development variants in order to prepare the best plans for constructing sustainable urban communities and futures.
Resumo:
Materials with one-dimensional (1D) nanostructure are important for catalysis. They are the preferred building blocks for catalytic nanoarchitecture, and can be used to fabricate designer catalysts. In this thesis, one such material, alumina nanofibre, was used as a precursor to prepare a range of nanocomposite catalysts. Utilising the specific properties of alumina nanofibres, a novel approach was developed to prepare macro-mesoporous nanocomposites, which consist of a stacked, fibrous nanocomposite with a core-shell structure. Two kinds of fibrous ZrO2/Al2O3 and TiO2/Al2O3 nanocomposites were successfully synthesised using boehmite nanofibers as a hard temperate and followed by a simple calcination. The alumina nanofibres provide the resultant nanocomposites with good thermal stability and mechanical stability. A series of one-dimensional (1D) zirconia/alumina nanocomposites were prepared by the deposition of zirconium species onto the 3D framework of boehmite nanofibres formed by dispersing boehmite nanofibres into a butanol solution, followed by calcination at 773 K. The materials were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and Fourier Transform Infrared spectroscopy (FT-IR). The results demonstrated that when the molar percentage, X, X=100*Zr/(Al+Zr), was > 30%, extremely long ZrO2/Al2O3 composite nanorods with evenly distributed ZrO2 nanocrystals formed on their surface. The stacking of such nanorods gave rise to a new kind of macroporous material without the use of any organic space filler\template or other specific drying techniques. The mechanism for the formation of these long ZrO2/Al2O3 composite nanorods is proposed in this work. A series of solid-superacid catalysts were synthesised from fibrous ZrO2/Al2O3 core and shell nanocomposites. In this series, the zirconium molar percentage was varied from 2 % to 50 %. The ZrO2/Al2O3 nanocomposites and their solid superacid counterparts were characterised by a variety of techniques including 27Al MAS-NMR, SEM, TEM, XPS, Nitrogen adsorption and Infrared Emission Spectroscopy. NMR results show that the interaction between zirconia species and alumina strongly correlates with pentacoordinated aluminium sites. This can also be detected by the change in binding energy of the 3d electrons of the zirconium. The acidity of the obtained superacids was tested by using them as catalysts for the benzolyation of toluene. It was found that a sample with a 50 % zirconium molar percentage possessed the highest surface acidity equalling that of pristine sulfated zirconia despite the reduced mass of zirconia. Preparation of hierarchically macro-mesoporous catalyst by loading nanocrystallites on the framework of alumina bundles can provide an alternative system to design advanced nanocomposite catalyst with enhanced performance. A series of macro-mesoporous TiO2/Al2O3 nanocomposites with different morphologies were synthesised. The materials were calcined at 723 K and were characterised by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), N2 adsorption/desorption, Infrared Emission Spectroscopy (IES), and UV-visible spectroscopy (UV-visible). A modified approach was proposed for the synthesis of 1D (fibrous) nanocomposite with higher Ti/Al molar ratio (2:1) at lower temperature (<100oC), which makes it possible to synthesize such materials on industrial scale. The performances of a series of resultant TiO2/Al2O3 nanocomposites with different morphologies were evaluated as a photocatalyst for the phenol degradation under UV irradiation. The photocatalyst (Ti/Al =2) with fibrous morphology exhibits higher activity than that of the photocatalyst with microspherical morphology which indeed has the highest Ti to Al molar ratio (Ti/Al =3) in the series of as-synthesised hierarchical TiO2/Al2O3 nanocomposites. Furthermore, the photocatalytic performances, for the fibrous nanocomposites with Ti/Al=2, were optimized by calcination at elevated temperatures. The nanocomposite prepared by calcination at 750oC exhibits the highest catalytic activity, and its performance per TiO2 unit is very close to that of the gold standard, Degussa P 25. This work also emphasizes two advantages of the nanocomposites with fibrous morphology: (1) the resistance to sintering, and (2) good catalyst recovery.
Resumo:
In situ FT-IR spectroscopy allows the methanol synthesis reaction to be investigated under actual industrial conditions of 503 K and 10 MPa. On Cu/SiO2 catalyst formate species were initially formed which were subsequently hydrogenated to methanol. During the reaction a steady state concentration of formate species persisted on the copper. Additionally, a small quantity of gaseous methane was produced. In contrast, the reaction of CO2 and H2 on ZnO/SiO2 catalyst only resulted in the formation of zinc formate species: no methanol was detected. The interaction of CO2 and H2 with Cu/ZnO/SiO2 catalyst gave formate species on both copper and zinc oxide. Methanol was again formed by the hydrogenation of copper formate species. Steady-state concentrations of copper formate existed under actual industrial reaction conditions, and copper formate is the pivotal intermediate for methanol synthesis. Collation of these results with previous data on copper-based methanol synthesis catalysts allowed the formulation of a reaction mechanism