919 resultados para Pechini method and chromium
Resumo:
PbTiO3 thin films were deposited on Si(100) via hybrid chemical method and crystallized between 400 and 700 degreesC to study the effect of the crystallization kinetics on structure and microstructure of these materials. X-ray diffraction (XRD) technique was used to study the structure of the crystallized films. In the temperature range investigated, the lattice strain (c/a) presented a maximum value (c/a = 1.056) for film crystallized at 600 degreesC for I h. Atomic force microscopy (AFM) was used in investigation of the microstructure of the films. The rms roughness of the films linearly increases with temperature and ranged from 1.25 to 9.04 nm while the grain sizes ranged from 130.6 to 213.6 nm. Greater grain size was observed for film crystallized at 600 degreesC for 1 h. (C) 2002 Elsevier B.V. S.A. All rights reserved.
Resumo:
In this study five compositions were synthesized zirconia doped with cerium and neodymium ions in the system Ce10-xNdx Zr90O2 with 0,5 ≤ x ≤ 4,0 using the Pechini method. The powders were characterized by thermogravimetric analysis, differential thermal analysis, infrared spectroscopy and X-ray diffraction, with application of Rietveld refinement of the calcination temperatures of 350ºC/3h and 30 minutes at 900ºC/3h. All compositions stabilized with a mixture of cubic and tetragonal phase zirconia. The samples were pressed into bars and sintered at 1500°C/3h and 1500°C/6h, being characterized by Xray diffraction, with application of the Rietveld refinement, density and porosity using Archimedes method, scanning electron microscopy and resistance the three point bending. It has been observed the increase in strength with increasing sintering temperature for the compositions x = 2,0 and x = 4,0. For x = 2,0 the main phase was the cubic with 92,56% with crystallite size of 0,56 μm, density and porosity of 96,82% from 1,36%. For x = 4,0 was a mixture of cubic and tetragonal phase with 21% and 37,98%, respectively. The crystallite size was 54,21 nm and 49,64 nm with a density porosity of 97,45% and 1,32% respectively. In the analysis of the fracture surface was observed a greater amount of grain fracture intragranular type, which contribute to increase the mechanical strength of the ceramic. Increased addition of the neodymium ion in the crystal lattice of the zirconium showed a nearly linear behavior with increasing mechanical strength of the zirconia ceramic. Was obtained a bending resistance of 537 ± 38 MPa for the composition x = 2,0 predominantly attributed to cubic phase with 92,56%
Resumo:
The effect of application methods and dentin hydration on the bond strength of three self-etching adhesives (SEA) were evaluated; 195 extracted bovine incisors were used. The buccal surface was ground in order to expose the dentin, which remained 2-mm minimum thickness, measured by a thickness meter through an opening on the lingual surface. Adper Single Bond 2 (TM) was used for the control group. The SEA were applied following two modes of application: passive or active and two hydration states of the dentin surface-dry and wet. After light-curing, composite buildups were made using Grandio (TM) composite. The specimens were sectioned and tested with a microtensile bond strength test. The application method and the hydration state resulted in statistical differences (p = 0.000) making the values of active application for mu TBS to dentin higher than passive application. The wet surfaces showed higher mu TBS to dentin ratios than dry surfaces. There were no statistical differences in mu TBS among the SEA tested but there were differences regarding to control group.
Resumo:
Purpose: To evaluate the effect of surface hydration state and application method on the microtensile bond strength of one-step self-etching adhesives systems to cut enamel.Materials and Methods: One hundred ninety-five bovine teeth were used. The enamel on the buccal side was flattened with 600-grit SiC paper. For the control group, 15 teeth received Adper Single Bond 2, applied according to manufacturer's recommendations. The other specimens were divided into three groups according to the adhesive system used: Futura Bond M (FM; Voco), Clearfil S-3 Bond (CS; Kuraray), and Optibond All in One (OA; Kerr). For each group, two hydration states were tested: D: blown dry with air; W: the excess of water was removed with absorbent paper. Two application methods were tested: P (passive): the adhesive was simply left on the surface; A (active): the adhesive was rubbed with an applicator point. A coat of Grandio composite resin (Voco) was applied on the surface. The teeth were sectioned to obtain enamel-resin sticks (1 x 1 mm), which underwent microtensile bond testing. The data in MPa were submitted to a three-way ANOVA and Tukey's test (alpha = 5%).Results: The ANOVA showed significant differences for application method and the type of adhesive, but not for hydration state. For the application method, the results of Tukey's test were: P: 31.46 (+/-7.09)a; A: 34.04 (+/-7.19)b. For the type of adhesive, the results were: OA: 31.29 (+/-7.05)a; CS: 32.28 (+/-7.14)a; FM: 34.68 (+/-7.17)b; different lower-case letters indicate statistically significant differences.Conclusion: Active application improved the bond strength to cut enamel. The adhesive Futurabond M showed the highest bond strength to cut enamel.
Resumo:
Thin films of potassium niobate were deposited on (100) Si substrates by the polymeric precursor method (Pechini method). Annealing in static air was performed at 600degrees C for 20 h. The obtained films were characterized by X-ray diffraction and atomic force microscopy (AFM). Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The dielectric constant, dissipation factor and resistance were measured in frequency region from 10 Hz to 10 MHz. At 1 MHz, the dielectric constant was 158 and the dissipation factor was 0.11. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Thin films of lithium niobate were deposited on (100) silicon by the polymeric precursor method (Pechini method). Annealing in static air was performed at 500degreesC for 3 h. The films obtained were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. Electrical characterization of the films pointed to ferroelectricity via hysteresis loop. The dielectric constant, dissipation factor and resistance were measured in the frequency region from 10 Hz to 10 MHz. At 1 MHz, the dielectric constant was 46 and the dissipation factor was 0.043. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Polymeric precursor solution (Pechini method) was used to deposit LiNbO3 thin films by spin-coating on (100) silicon substrates. X-ray diffraction data of thin films showed that the increase of oxygen flow promotes a preferred orientation of (001) LiNbO3 planes parallel to the substrate surface. Surface roughness and grain size, observed by atomic force microscopy, change also with oxygen flow.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this work, GdAlO3:Pr3+ was successfully prepared by the Pechini method at lower temperatures when compared to others methods such as solid-state synthesis and sol-gel process. In accordance to the XRD data, the fully crystalline single-phase GdAlO3 could be obtained at 900 degrees C. Luminescence measurements indicate Gd -> Pr3+ energy transfer. In the emission spectra, the P-3(0) ->(3) H-4 (blue emission) and D-1(2) ->(3) H-4 (red emission) transitions of Pr3+ ions can be observed and the ratio between their intensities depends on the Pr3+ content due to the cross-relaxation phenomenon.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O objetivo deste trabalho é descrever a síntese e a caracterização óptica de uma solução sólida de óxido de zircônio contendo ítrio e lantânio. Foram misturados citrato de zircônio, nitrato de ítrio e nitrato de lantânio nas proporções 94 mol% ZrO2-6 mol% Y2O3 e 92 mol% ZrO2-6 mol % Y2O3-2 mol % La2O3. A análise de espectroscopia de absorção no infravermelho com tranformada de Fourier mostra material orgânico em decomposição e a análise térmica mostra a transformação de fases da zircônia tetragonal para monoclínica, a perda de água e a desidroxilação do zircônio. A análise por difração de raios X mostra formação de fases homogênea de ZrO2-Y2O3-La2O3 demonstrando que a adição de lantânio não provoca formação de fases, promovendo uma solução sólida baseada em zircônia cúbica. Os espectros de fotoluminescência mostram bandas de absorção em 562 nm e 572 nm (350 ºC) e bandas de absorção específicas em 543 nm, 561 nm, 614 nm e 641 nm (900 ºC). O efeito fotoluminescente a baixas temperaturas é causado por defeitos como (Y Zr,Y O)', (2Y Zr,V O)'' e V O. As emissões em 614 nm e 641 nm são causadas pela transição O-2p -> Zr-4d. Uma emissão em 543 nm pode ser atribuída a centros LaO8 com transição O-2p -> La-5d.
Resumo:
Trinta Candida albicans isoladas de pacientes portadores de candidose oral e 30 Candida albicans isoladas de indivíduos controle foram estudadas. Testes de susceptibilidade in vitro foram realizados com anfotericina B, fluconazol, 5-flucitosina e itraconazol pelo método do Clinical and Laboratorial Standars Institute (CLSI) e por E-test. Os resultados obtidos foram analisados e comparados. Os valores de CIM foram semelhantes para amostras isoladas de pacientes portadores de candidose oral e indivíduos controle. A concordância entre os dois métodos foi de 66,7% para a anfotericina B, 53,33% para o fluconazol, 65% para a flucitosina e 45% para o itraconazol. de acordo com estes resultados, o método do E-test poderia ser uma alternativa para a triagem de casos de rotina pela sua simplicidade. Entretanto, este método não pode ser considerado como um substituto para o método de referência do CLSI.
Resumo:
CaSnO3 was synthesized by the polymeric precursor method, using different precursor salts as (CH3COO)(2)Ca. H2O, Ca(NO3)(2). 4H(2)O, CaCl2. 2H(2)O and CaCO3, leading to different results. Powder precursor was characterized using thermal analysis. Depending on the precursor different thermal behaviors were obtained. Results also indicate the formation of carbonates, confirmed by IR spectra. After calcination and characterization by XRD, the formation of perovskite as single phase was only identified when calcium acetate was used as precursor. For other precursors, tin oxide was observed as secondary phase.
Resumo:
PLZT ceramics belong to one of the very important groups of functional materials that make a basis for the production of a large range of electronic devices. The microstructure and properties of ceramics depend on the powder preparation and thermal processing conditions. Various techniques have been used to obtain chemically homogeneous and fine starting powders. PLZT powders have been prepared by two different production routes: by a modified Pechini method, using a polymeric precursor method (PMM) and by a partial oxalate method. A two-step sintering process, including a hot pressing, was carried out at 1100 and 1200degreesC Distinct phases obtained during the sintering process have been investigated by SEM and EDS techniques and dielectric properties such as permittivity and dielectric loss were measured in a frequency range from 1 to 20 kHz.. A significant difference in microstructure and dielectric properties, depending on powder origin and sintering procedure, has been noticed.