968 resultados para Pauli-Dirac oscillator
Resumo:
The duality between the Cartesian coordinates on the Minkowski space-time and the Dirac field is investigated. Two distinct possibilities to define this duality are shown to exist. In both cases, the equations satisfied by prepotentials are of second order. (C) 2000 Elsevier B.V. B.V. All rights reserved.
Resumo:
This paper investigates the usefulness of the generator coordinate method (GCM) for treating the dynamics of a reaction coordinate coupled to a bath of harmonic degrees of freedom. Models for the unimolecular dissociation and isomerization process (proton transfer) are analyzed. The GCM results, presented in analytical form, provide a very good description and are compared to other methods Like the basis set method and multiconfiguration time dependent self-consistent field. (C) 1998 American Institute of Physics. [S0021-9606(98)50934-8].
Resumo:
For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.
Resumo:
In a recent paper, we raised a question on the validity of Feynman's prescription of disregarding the Pauli principle in intermediate states of perturbation theory. In the preceding Comment, Cavalcanti correctly pointed out that Feynman's prescription is consistent with the exact solution of the model that we used. This means that the Pauli principle does not necessarily apply to intermediate states. We discuss implications of this puzzling aspect.
Resumo:
We consider the problem of a harmonic oscillator coupled to a scalar field in the framework of recently introduced dressed coordinates. We compute all the probabilities associated with the decay process of an excited level of the oscillator. Instead of doing direct quantum mechanical calculations we establish some sum rules from which we infer the probabilities associated to the different decay processes of the oscillator. Thus, the sum rules allows to show that the transition probabilities between excited levels follow a binomial distribution. (c) 2005 Published by Elsevier B.V.
Resumo:
Dual-helicity eigenspinors of the charge conjugation operator [eigenspinoren des ladungskonjugationsoperators (ELKO) spinor fields] belong-together with Majorana spinor fields-to a wider class of spinor fields, the so-called flagpole spinor fields, corresponding to the class (5), according to Lounesto spinor field classification based on the relations and values taken by their associated bilinear covariants. There exists only six such disjoint classes: the first three corresponding to Dirac spinor fields, and the other three, respectively, corresponding to flagpole, flag-dipole, and Weyl spinor fields. This paper is devoted to investigate and provide the necessary and sufficient conditions to map Dirac spinor fields to ELKO, in order to naturally extend the standard model to spinor fields possessing mass dimension 1. As ELKO is a prime candidate to describe dark matter, an adequate and necessary formalism is introduced and developed here, to better understand the algebraic, geometric, and physical properties of ELKO spinor fields, and their underlying relationship to Dirac spinor fields. (c) 2007 American Institute of Physics.
Resumo:
Regarding the Pauli principle in quantum field theory and in many-body quantum mechanics, Feynman advocated that Pauli's exclusion principle can be completely ignored in intermediate states of perturbation theory. He observed that all virtual processes (of the same order) that violate the Pauli principle cancel out. Feynman accordingly introduced a prescription, which is to disregard the Pauli principle in all intermediate processes. This ingenious trick is of crucial importance in the Feynman diagram technique. We show, however, an example in which Feynman's prescription fails. This casts doubts on the general validity of Feynman's prescription. [S1050-2947(99)04604-1].
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A fundamental action, representing a mass dimension-transmuting operator between Dirac and ELKO spinor fields, is performed on the Dirac Lagrangian, in order to lead it into the ELKO Lagrangian. Such a dynamical transformation can be seen as a natural extension of the Standard Model that incorporates dark matter fields. The action of the mass dimension-transmuting operator on a Dirac spinor field, that de fines and introduces such a mapping, is shown to be a composition of the Dirac operator and the nonunitary transformation that maps Dirac spinor fields into ELKO spinor fields, de fined in J. Math. Phys. 4 8, 123517 (2007). This paper gives allowance for ELKO, as a candidate to describe dark matter, to be incorporated in the Standard Model. It is intended to present for the first time, up to our knowledge, the dynamical character of a mapping between Dirac and ELKO spinor fields, transmuting the mass dimension of spin one-half fermionic fields from 3/2 to 1 and from 1 to 3/2.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We proposed a simple feedback control method to suppress chaotic behavior in oscillators with limited power supply. The small-amplitude controlling signal is applied directly to the power supply system, so as to alter the characteristic curve of the driving motor. Numerical results are presented showing the method efficiency for a wide range of control parameters. Moreover, we have found that, for some parameters, this kind of control may introduce coexisting periodic attractors with complex basins of attraction and, therefore, serious problems with predictability of the final state the system will asymptote to. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)