895 resultados para Passive control, Biventricular support, Rotary pump, Mock circulation, Baroreceptor response
Resumo:
Background: Exercise training (ET) has been used as a nonpharmacological strategy for treatment of diabetes and myocardial infarction (MI) separately. We evaluated the effects ET on functional and molecular left ventricular (LV) parameters as well as on autonomic function and mortality in diabetics after MI. Methods and Results: Male Wistar rats were divided into control (C), sedentary-diabetic infarcted (SDI), and trained-diabetic infarcted (TDI) groups. MI was induced after 15 days of streptozotocin-diabetes induction. Seven days after MI, the trained group underwent ET protocol (90 days, 50-70% maximal oxygen consumption-VO(2)max). LV function was evaluated noninvasively and invasively; baroreflex sensitivity, pulse interval variability, cardiac output, tissue blood flows, VEGF mRNA and protein, HIF1-alpha mRNA, and Ca2+ handling proteins were measured. MI area was reduced in TDI (21 +/- 4%) compared with SDI (38 +/- 4%). ET induced improvement in cardiac function, hemodynamics, and tissue blood flows. These changes were probable consequences of a better expression of Ca2+ handling proteins, increased VEGF mRNA and protein expression as well as improvement in autonomic function, that resulted in reduction of mortality in TDI (33%) compared with SDI (68%) animals. Conclusions: ET reduced cardiac and peripheral dysfunction and preserved autonomic control in diabetic infarcted rats. Consequently, these changes resulted in improved VO(2)max and survival after MI. (J Cardiac Fail 2012; 18:734-744)
Models of passive and active dendrite motoneuron pools and their differences in muscle force control
Resumo:
Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.
Resumo:
The emergency of infection by highly pathogenic avian influenza virus (HPAI) subtype H5N1 has focused the attention of the world scientific community, requiring the prompt provision of effective control systems for early detection of the circulation of low pathogenic influenza H5 viruses (LPAI) in populations of wild birds to prevent outbreaks of highly pathogenic (HPAI) in populations of domestic birds with possible transmission to humans. The project stems from the aim to provide, through a preliminary analysis of data obtained from surveillance in Italy and Europe, a preliminary study about the virus detection rates and the development of mathematical models, an objective assessment of the effectiveness of avian influenza surveillance systems in wild bird populations, and to point out guidelines to support the planning process of the sampling activities. The results obtained from the statistical processing quantify the sampling effort in terms of time and sample size required, and simulating different epidemiological scenarios identify active surveillance as the most suitable for endemic LPAI infection monitoring in wild waterfowl, and passive surveillance as the only really effective tool in early detecting HPAI H5N1 circulation in wild populations. Given the lack of relevant information on H5N1 epidemiology, and the actual finantial and logistic constraints, an approach that makes use of statistical tools to evaluate and predict monitoring activities effectiveness proves to be of primary importance to direct decision-making and make the best use of available resources.
Resumo:
In the last years of research, I focused my studies on different physiological problems. Together with my supervisors, I developed/improved different mathematical models in order to create valid tools useful for a better understanding of important clinical issues. The aim of all this work is to develop tools for learning and understanding cardiac and cerebrovascular physiology as well as pathology, generating research questions and developing clinical decision support systems useful for intensive care unit patients. I. ICP-model Designed for Medical Education We developed a comprehensive cerebral blood flow and intracranial pressure model to simulate and study the complex interactions in cerebrovascular dynamics caused by multiple simultaneous alterations, including normal and abnormal functional states of auto-regulation of the brain. Individual published equations (derived from prior animal and human studies) were implemented into a comprehensive simulation program. Included in the normal physiological modelling was: intracranial pressure, cerebral blood flow, blood pressure, and carbon dioxide (CO2) partial pressure. We also added external and pathological perturbations, such as head up position and intracranial haemorrhage. The model performed clinically realistically given inputs of published traumatized patients, and cases encountered by clinicians. The pulsatile nature of the output graphics was easy for clinicians to interpret. The manoeuvres simulated include changes of basic physiological inputs (e.g. blood pressure, central venous pressure, CO2 tension, head up position, and respiratory effects on vascular pressures) as well as pathological inputs (e.g. acute intracranial bleeding, and obstruction of cerebrospinal outflow). Based on the results, we believe the model would be useful to teach complex relationships of brain haemodynamics and study clinical research questions such as the optimal head-up position, the effects of intracranial haemorrhage on cerebral haemodynamics, as well as the best CO2 concentration to reach the optimal compromise between intracranial pressure and perfusion. We believe this model would be useful for both beginners and advanced learners. It could be used by practicing clinicians to model individual patients (entering the effects of needed clinical manipulations, and then running the model to test for optimal combinations of therapeutic manoeuvres). II. A Heterogeneous Cerebrovascular Mathematical Model Cerebrovascular pathologies are extremely complex, due to the multitude of factors acting simultaneously on cerebral haemodynamics. In this work, the mathematical model of cerebral haemodynamics and intracranial pressure dynamics, described in the point I, is extended to account for heterogeneity in cerebral blood flow. The model includes the Circle of Willis, six regional districts independently regulated by autoregulation and CO2 reactivity, distal cortical anastomoses, venous circulation, the cerebrospinal fluid circulation, and the intracranial pressure-volume relationship. Results agree with data in the literature and highlight the existence of a monotonic relationship between transient hyperemic response and the autoregulation gain. During unilateral internal carotid artery stenosis, local blood flow regulation is progressively lost in the ipsilateral territory with the presence of a steal phenomenon, while the anterior communicating artery plays the major role to redistribute the available blood flow. Conversely, distal collateral circulation plays a major role during unilateral occlusion of the middle cerebral artery. In conclusion, the model is able to reproduce several different pathological conditions characterized by heterogeneity in cerebrovascular haemodynamics and can not only explain generalized results in terms of physiological mechanisms involved, but also, by individualizing parameters, may represent a valuable tool to help with difficult clinical decisions. III. Effect of Cushing Response on Systemic Arterial Pressure. During cerebral hypoxic conditions, the sympathetic system causes an increase in arterial pressure (Cushing response), creating a link between the cerebral and the systemic circulation. This work investigates the complex relationships among cerebrovascular dynamics, intracranial pressure, Cushing response, and short-term systemic regulation, during plateau waves, by means of an original mathematical model. The model incorporates the pulsating heart, the pulmonary circulation and the systemic circulation, with an accurate description of the cerebral circulation and the intracranial pressure dynamics (same model as in the first paragraph). Various regulatory mechanisms are included: cerebral autoregulation, local blood flow control by oxygen (O2) and/or CO2 changes, sympathetic and vagal regulation of cardiovascular parameters by several reflex mechanisms (chemoreceptors, lung-stretch receptors, baroreceptors). The Cushing response has been described assuming a dramatic increase in sympathetic activity to vessels during a fall in brain O2 delivery. With this assumption, the model is able to simulate the cardiovascular effects experimentally observed when intracranial pressure is artificially elevated and maintained at constant level (arterial pressure increase and bradicardia). According to the model, these effects arise from the interaction between the Cushing response and the baroreflex response (secondary to arterial pressure increase). Then, patients with severe head injury have been simulated by reducing intracranial compliance and cerebrospinal fluid reabsorption. With these changes, oscillations with plateau waves developed. In these conditions, model results indicate that the Cushing response may have both positive effects, reducing the duration of the plateau phase via an increase in cerebral perfusion pressure, and negative effects, increasing the intracranial pressure plateau level, with a risk of greater compression of the cerebral vessels. This model may be of value to assist clinicians in finding the balance between clinical benefits of the Cushing response and its shortcomings. IV. Comprehensive Cardiopulmonary Simulation Model for the Analysis of Hypercapnic Respiratory Failure We developed a new comprehensive cardiopulmonary model that takes into account the mutual interactions between the cardiovascular and the respiratory systems along with their short-term regulatory mechanisms. The model includes the heart, systemic and pulmonary circulations, lung mechanics, gas exchange and transport equations, and cardio-ventilatory control. Results show good agreement with published patient data in case of normoxic and hyperoxic hypercapnia simulations. In particular, simulations predict a moderate increase in mean systemic arterial pressure and heart rate, with almost no change in cardiac output, paralleled by a relevant increase in minute ventilation, tidal volume and respiratory rate. The model can represent a valid tool for clinical practice and medical research, providing an alternative way to experience-based clinical decisions. In conclusion, models are not only capable of summarizing current knowledge, but also identifying missing knowledge. In the former case they can serve as training aids for teaching the operation of complex systems, especially if the model can be used to demonstrate the outcome of experiments. In the latter case they generate experiments to be performed to gather the missing data.
Resumo:
L'interazione in maniera sicura e compliante è una caratteristica sempre più richiesta per i sistemi robotici. La modellazione di sistemi eseguita tramite l'uso di sistemi port-Hamiltoninani permette di comprendere cosa avviene a livello energetico durante l'interazione e aiuta nella progettazinoe di un controllore tale che il comportamento del sistema controllato sia passivo e sicuro durante essa. Ciò sfocia nel cosiddetto Controllore Intrinsicamente Passivo (IPC). Dal momento che questo un controllo impone la rigidezza desiderata al sistema controllato, è possibile, tra le altre cose, replicare il comportamento del dispositivo RCC (Centro Remoto di Complianza) e di migliorarlo in modo tale che durante l'azione di peg-in-hole il buco sia meno sollecitato dal robot.
Resumo:
Right axillary artery (RAA) cannulation is increasingly used in cardiac surgery. Little is known about resulting flow patterns in the aorta. Therefore, flow was visualized and analyzed. A mock circulatory circuit was assembled based on a compliant transparent anatomical silicon aortic model. A RAA cannula was connected to a continuous flow rotary blood pump (RBP), pulsatile heart action was provided by a pneumatic ventricular assist device (PVAD). Peripheral vascular resistance, regional flow and vascular compliance were adjusted to obtain physiological flow and pressure waveforms. Colorants were injected automatically for flow visualization. Five flow distributions with a total flow of 4 l/min were tested (%PVAD:%RBP): 100:0, 75:25, 50:50, 25:75, 0:100. Colorant distribution was assessed using quantitative 2D image processing. Continuous flow from the RAA divided in a retrograde and an antegrade portion. Retro- to antegrade flow ratio increased with increasing RAA-flow. At full RBP support flow was stagnant in the ascending aorta. There were distinct flow patterns between the right- and left-sided supra-aortic branches. At full RBP support retrograde flow was demonstrated in the right carotid and right vertebral arteries. Further studies are needed to confirm and evaluate the described flow patterns.
Resumo:
The responses of hamsters to intracranial injections of the cholinergic agonist oxotremorine (OXO) implicate cholinergic mechanisms in the medial preoptic area (MPOA) in the control of male mating behavior. To extend these observations, we ran three studies of responses to cholinergic drugs delivered singly or in combination to the vicinity of the MPOA. The first tested responses to OXO, confirming its ability to reduce the postejaculatory interval. The second complemented the first by examining responses to MPOA microinjections of the cholinergic antagonist scopolamine (SCO). These caused several changes revolving around intromission. These included increases in intromission frequency and ejaculation latency. They also included a change in the patterning of intromissions, marked by continuous strings without the usual separation by dismounts. The final study resembled the others in examining the effects of MPOA injections of OXO and SCO but focused on the ability of each drug to antagonize responses to the other. Most of the responses to OXO and SCO individually replicated earlier findings, though the measures examined here also permitted the description of effects on some noncopulatory sexual behaviors, specifically the male's inspection of the female. However, the most interesting results may be those suggesting asymmetry in the responses to the addition of the second drug: Whereas responses to OXO tended to be antagonized by SCO, OXO was less effective at counteracting responses to SCO. Though the explanation of this asymmetry is not completely clear, it is consistent with previous suggestions of differences in the affinities of these drugs for subtypes of muscarinic receptors. Therefore, it suggests that the cholinergic synapses and circuits controlling distinct elements of male behavior could differ in their dependence on these receptors. Copyright 2013 Elsevier Inc. All rights reserved.
Resumo:
The variability of the Atlantic meridional overturing circulation (AMOC) strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN) Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST) anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT) in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.
Resumo:
Purpose: Mismatches between pump output and venous return in a continuous-flow ventricular assist device may elicit episodes of ventricular suction. This research describes a series of in vitro experiments to characterize the operating conditions under which the EVAHEART centrifugal blood pump (Sun Medical Technology Research Corp., Nagano, Japan) can be operated with minimal concern regarding left ventricular (LV) suction. Methods: The pump was interposed into a pneumatically driven pulsatile mock circulatory system (MCS) in the ventricular apex to aorta configuration. Under varying conditions of preload, afterload, and systolic pressure, the speed of the pump was increased step-wise until suction was observed. Identification of suction was based on pump inlet pressure. Results: In the case of reduced LV systolic pressure, reduced preload (=10 mmHg), and afterload (=60 mmHg), suction was observed for speeds =2,200 rpm. However, suction did not occur at any speed (up to a maximum speed of 2,400 rpm) when preload was kept within 10-14 mmHg and afterload =80 mmHg. Although in vitro experiments cannot replace in vivo models, the results indicated that ventricular suction can be avoided if sufficient preload and afterload are maintained. Conclusion: Conditions of hypovolemia and/or hypotension may increase the risk of suction at the highest speeds, irrespective of the native ventricular systolic pressure. However, in vitro guidelines are not directly transferrable to the clinical situation; therefore, patient-specific evaluation is recommended, which can be aided by ultrasonography at various points in the course of support.
Resumo:
In a 9-year-old boy, bridging to transplantation was successful with an external biventricular device, the Berlin Heart Excor (Berlin Heart, Berlin, Germany), during a 7-month period. Main long-term complications consisted of infection and hypercoagulability with clotting inside the chambers necessitating six pump exchanges, but without thromboembolic events. This report reviews hemostasis monitoring and management of long-term mechanical circulatory support.
Resumo:
OBJECTIVE Coronary artery bypass grafting (CABG) using extracorporeal circulation (ECC) is still the gold standard. However, alternative techniques have been developed to avoid ECC and its potential adverse effects. These encompass minimal extracorporeal circulation (MECC) or off-pump coronary artery bypass grafting (OPCAB). However, the prevailing potential benefits when comparing MECC and OPCABG are not yet clearly established. METHODS In this retrospective study we investigated the potential benefits of MECC and OPCABG in 697 patients undergoing CABG. Of these, 555 patients had been operated with MECC and 142 off-pump. The primary endpoint was Troponin T level as an indicator for myocardial damage. RESULTS Study groups were not significantly different in general. However, patients undergoing OPCABG were significantly older (65.01 years ± 9.5 vs. 69.39 years ± 9.5; p value <0.001) with a higher Logistic EuroSCORE I (4.92% ± 6.5 vs. 5.88% ± 6.8; p value = 0.017). Operating off pump significantly reduced the need for intra-operative blood products (0.7% vs. 8.6%; p-value <0.001) and the length of stay in the intensive care unit (ICU) (2.04 days ± 2.63 vs. 2.76 days ± 2.79; p value <0.001). Regarding other blood values a significant difference could not be found in the adjusted calculations. The combined secondary endpoint, major cardiac or cerebrovascular events (MACCE), was equal in both groups as well. CONCLUSIONS Coronary artery bypass grafting using MECC or OPCABG are two comparable techniques with advantages for OPCABG regarding the reduced need for intra-operative blood products and shorter length of stay in the ICU. However serological values and combined endpoint MACCE did not differ significantly in both groups.
Resumo:
In Switzerland 200’000 people suffer from congestive heart failure. Approximately 10’000 patients find themselves in an advanced state of the disease. When conservative treatment options are no longer available heart transplantation is the therapy of choice. Should this not be an option due to long waiting lists or medical issues assist device therapy becomes an option. Assist device therapy is separated in short-term and long-term support. Long-term support is nowadays performed with ventricular assist devices (VADs). The native heart is still in place and supported in parallel to the remaining function of the heart. The majority of patients are treated with a left ventricular assist device (LVAD). The right ventrical alone (RVAD) as well as bi-ventricular support (BiVAD) is rarely needed. The modern VADs are implantable and create a non-pulsative bloodflow. A percutaneous driveline enables energy supply and pump-control. Indication strategies for VAD implantations include bridge to transplant (short term support), bridge to candidacy and bridge to transplant. VADs become more and more a definite therapeutic option (destination therapy). VAD therapy might be a realistic alternative to organ transplantation in the near future.
Resumo:
This study addressed two purposes: (1) to determine the effect of person-environment fit on the psychological well-being of psychiatric aides and (2) to determine what role the coping resources of social support and control have on the above relationship. Two hundred and ten psychiatric aides working in a state hospital in Texas responded to a questionnaire pertaining to these issues.^ Person-environment fit, as a measure of occupational stress, was assessed through a modified version of the Work Environment Scale (WES). The WES subscales used in this study were: involvement, autonomy, job pressure, job clarity, and physical comfort. Psychological well-being was measured with the General Well-Being Schedule which was developed by the National Center for Health Statistics. Co-worker and supervisor support were measured through the WES and finally, control was assessed through Rotter's Locus of Control Scale.^ The results of this study were as follows: (1) all person-environment (p-e) dimensions appeared to have linear relationships with psychological well-being; (2) the p-e fit - well-being relationship did not appear to be confounded by demographic factors; (3) all p-e fit dimensions were significantly related to well-being except for autonomy; (4) p-e fit was more strongly related to well-being than the environmental measure alone; (5) supervisor support and non-work related support were found to have additive effects on the relationship between p-e fit and well-being, however no interaction or buffering effects were observed; (6) locus of control was found to have additive effects in the prediction of well-being and showed interactive effects with work pressure, involvement and physical comfort; and (7) the testing of the overall study model which included many of the components mentioned above yielded an R('2) = .27.^ Implications of these findings are discussed, future research suggested and applications proposed. ^
Resumo:
A study on the manoeuvrability of a riverine support patrol vessel is made to derive a mathematical model and simulate maneuvers with this ship. The vessel is mainly characterized by both its wide-beam and the unconventional propulsion system, that is, a pump-jet type azimuthal propulsion. By processing experimental data and the ship characteristics with diverse formulae to find the proper hydrodynamic coefficients and propulsion forces, a system of three differential equations is completed and tuned to carry out simulations of the turning test. The simulation is able to accept variable speed, jet angle and water depth as input parameters and its output consists of time series of the state variables and a plot of the simulated path and heading of the ship during the maneuver. Thanks to the data of full-scale trials previously performed with the studied vessel, a process of validation was made, which shows a good fit between simulated and full-scale experimental results, especially on the turning diameter