949 resultados para P-type Atpase


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Low resistivity of p-type Mg-doped AlGaN/GaN superlattices (SLs) is demonstrated. The resistivity of the SLs is less than 0.6 Omega .cm. and the measured hole concentration is higher than 1x10(18)cm(-3). The resistivity of SLs is much lower, and the hole concentration of SLs is much higher, than that of bulk GaN and AlGaN, The electrical properties of the SLs are less sensitive than the conventional bulk lavers.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have designed and fabricated the visible vertical-cavity surface-emitting lasers (VCSEL's) by using metalorganic vapor phase epitaxy (MOVPE). We use the 8 lambda optical cavities with 3 quantum wells in AlGaInP/AlGaAs red VCSEL's to reduce the drift leakage current and enhance the model gain in AlGaInP active region. The structure has a p-type stack with 36 DBR pairs on the top and an n-type with 55-1/2 pairs on the bottom. Using micro-area reflectance spectrum, we try to get a better concordance between the center wavelength of DBR and the emitting wavelength of the active region. We used a component graded layer of 0.05 lambda thick (x = 0.5 similar to 0.9) at the p-type DBR AlGaAs/AlAs interface to reduce the resistance of p-type DBR. We use selective oxidation to define the current injection path. Because the oxidation rate of a thick layer is faster than a thinner one, we grown a thick AlAs layer close to the active region. In this way, we got a smaller active region for efficient confinement of injected carriers (the aperture area is 3 x 3 mu m) to reduce the threshold and, at the same time, a bigger conductive area in the DBR layers to reduce the resistance. We employ Zn doping on the p-side of the junction to improve hole injection and control the Zn dopant diffusion to get proper p-i-n junction. At room temperature, pulse operation of the laser has been achieved with the low threshold current of 0.8mA; the wavelength is about 670nm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The heteroepitaxial growth of n-type and p-type 3C-SiC on (0001) sapphire substrates has been performed with a supply of SiH4+C2H4+H-2 system by introducing ammonia (NH3) and diborane (B2H6) precursors, respectively, into gas mixtures. Intentionally incorporated nitrogen impurity levels were affected by changing the Si/C ratio within the growth reactor. As an acceptor, boron can be added uniformly into the growing 3C-SiC epilayers. Nitrogen-doped 3C-SiC epilayers were n-type conduction, and boron-doped epilayers were p-type and probably heavily compensated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Deep-level transient spectroscopy and photoluminescence studies have been carried out on structures containing self-assembled InAs quantum dots formed in GaAs matrices. The use of n- and p-type GaAs matrices allows us to study separately electron and hole levels in the quantum dots by the deep-level transient spectroscopy technique. From analysis of deep-level transient spectroscopy measurements it follows that the quantum dots have electron levels 130 meV below the bottom of the GaAs conduction band and heavy-hole levels at 90 meV above the top of the GaAs valence band. Combining with the photoluminescence results, the band structures of InAs and GaAs have been determined. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present work p-type Si specimens were implanted with Cl ions of 100 keV to successively increasing fluences of 1 x 10(15), 5 x 10(15), 1 x 10(16) and 5 x 10(16) ions cm(-2) and subsequently annealed at 1073 K for 30 min. The microstructure was investigated with the transmission electron microscopy (TEM) in both the plane-view and the cross-sectional view. The implanted layer was amorphized after chlorine implantation even at the lowest ion fluence, while re-crystallization of the implanted layer occurs on subsequent annealing at 1073 K. In the annealed specimens implanted above the lowest fluence three layers along depth with different microstructures were found, which include a shallow polycrystalline porous layer, a deeper single-crystalline layer containing high density of gas bubbles, a well separated deeper layer composed of dislocation loops in low density. With increasing ion fluence the thickness of the porous polycrystalline layer increases. It is indicated that chlorine can suppress the epitaxial re-crystallization of implanted silicon, when the implant fluence of Cl ions exceeds a certain level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Impurity-free single-crystalline antimony telluride hexagonal nanoplates (see figure) are synthesized by a facile and quick hydrothermal treatment without any organic additives or templates. The inherent crystal structure is the driving force for the growth of these Sb2Te3 hexagonal nanoplates. Films of these nanoplates shows p-type behavior, and exhibit a promisingly high Seebeck coefficient of 425 mu V K-1 at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

P-type copper phthalocyanine (CuPc) and n-type hexadecafluorophthalocyanina-tocopper (F16CuPc) polycrystalline films were investigated by Kelvin probe force microscopy (KPFM). Topographic and corresponding surface potential images are obtained simultaneously. Surface potential images are related with the local work function of crystalline facets and potential barriers at the grain boundaries (GBs) in organic semiconductors. Based on the spatial distribution of surface potential at GBs, donor- and acceptor-like trapping states in the grain boundaries (GBs) of p-CuPc and n-F16CuPc films are confirmed respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

5,10,15,20-Tetra-[(p-alkoxy-m-ethyloxy)phenyl]porphyrin and [5-(p-alkoxy)phenyl-10,15,20-tri-phenyl]porphyrin and their holmium(III) complexes are reported. They display a hexagonal columnar discotic columnar Col(h)) liquid crystal phase and were studied by cyclic voltammetry, surface photovoltage spectroscopy (SPS), electric-field-induced surface photovoltage spectroscopy (EFISPS) and luminescence spectroscopy. Within the accessible potential window, all these compounds exhibit two one-electron reversible redox reactions. Quantum yields of Q band are in the region 0.0045-0.21 at room temperature. The SPS and EFISPS reveal that all the compounds are p-type semiconductors and exhibit photovoltaic response due to pi-pi* electron transitions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we report the fabrication of permeable metal-base organic transistors based on N,N'-diphenyl-N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPB)/C-60 heterojunction as both emitter and collector. By applying different polarities of voltage bias to the collector and the base, and input current to the emitter, the ambipolar behavior can be observed. The device demonstrates excellent common-base characteristics both in P-type and N-type modes with common-base current gains of 0.998 and 0.999, respectively.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The authors investigated the switch-on transient properties of p-type vanadium phthalocyanine (VOPc) transistors, which were fabricated by weak epitaxy growth on ordered para-sexiphenyl (p-6P) layer. The overshoot phenomenon of drain current had been observed in the VOPc/p-6P transistors, which was explained by the filling of carriers in traps of organic films. The small overshoot value of about 35% and transient duration time of 2 ms demonstrated the low trap concentration in organic films, which were comparable to the reported hydrogenated amorphous-silicon thin-film transistors. Therefore, the VOPc/p-6P transistors can be applied in active matrix liquid crystal display as switch elements.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ambipolar organic field-effect transistors (OFETs) are produced, based on organic heterojunctions fabricated by a two-step vacuum-deposition process. Copper phthalocyanine (CuPc) deposited at a high temperature (250 degrees C) acts as the first (p-type component) layer, and hexadecafluorophthalocyaninatocopper (F16CuPc) deposited at room temperature (25 degrees C) acts as the second (n-type component) layer. A heterojunction with an interpenetrating network is obtained as the active layer for the OFETs. These heterojunction devices display significant ambipolar charge transport with symmetric electron and hole mobilities of the order of 10(-4) cm(2) V-1 s(-1) in air. Conductive channels are at the interface between the F16CuPc and CuPc domains in the interpenetrating networks. Electrons are transported in the F16CuPc regions, and holes in the CuPc regions. The molecular arrangement in the heterojunction is well ordered, resulting in a balance of the two carrier densities responsible for the ambipolar electrical characteristics. The thin-film morphology of the organic heterojunction with its interpenetrating network structure can be controlled well by the vacuum-deposition process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Five Ln(2)SrMCuO(6.5) oxides (M = Co, Ln = Y and Ho; M = Fe, Ln = Y, Ho, and Dy) were synthesized, and their crystal structures, IR spectra, and physical properties were studied. They have almost the same structure and crystallize in orthorhombic systems. Below room temperature, Y2SrFeCuO6.5, a known layered oxide, shows antiferromagnetic behavior, but the four new oxides are paramagnetic. Y2SrFeCuO6.5 fits the Curie-Weiss law in the temperature range 300-100 K, but Y2SrCoCuO6.5 shows complex magnetic behavior because of the disproportion of some Co+3 to Co+2 and Co+4 The five oxides are all p-type semiconductors in the measured temperature range and have large electrical resistivities at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The compound BaCuO2.5 Was obtained using BaO2 and CuO as starting materials, and its various properties were investigated. It belongs to the orthorhombic system with a = 8.55 angstrom, b = 10.56 angstrom, and c = 7.62 angstrom. The p-type semiconductor Ba

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The optical, electrical and photoelectric properties of rare earth monophosphides (LnP, Ln = La, Nd, Sm, Y, Dy and Yb) have been studied in thin films. The films exhibit semiconducting behaviour with energy gaps of 1.0-1.46 eV and n-type electrical conduction. Their resistivities are 10(-2) OMEGA-cm with corresponding Hall mobilities of 8.5-400 cm2 V-1 s-1. The films are deposited on a p-type silicon substrate in vacuum. Voltage-current characteristic measurements show that a p-n junction has been formed between LnP and silicon. Spectral sensitivity and a photovoltaic effect have been observed in LnP-Si junctions. They may be useful photoelectric materials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The catalytic performances of Mn-based catalysts have been investigated for the oxidative dehydrogenation of both ethane (ODE) and propane (ODP). The results show that a LiCl/MnOx/PC (Portland cement) catalyst has an excellent catalytic performance for oxidative dehydrogenation of both ethane and propane to ethylene and propylene, more than 60% alkanes conversion and more than 80% olefins selectivity could be achieved at 650 degrees C. In addition, the results indicate that Mn-based catalysts belong to p-type semiconductors, the electrical conductivity of which is the main factor in influencing the olefins selectivity. Lithium, chlorine and PC in the LiCl/MnOx/PC catalyst are all necessary components to keep the excellent catalytic performance at a low temperature.