930 resultados para Modification of the microflora
Resumo:
Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of electronic waste plastics were used in this investigation: acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS). This research investigation utilized two approaches for incorporating electronic waste plastics into asphalt pavement materials. The first approach was blending and integrating recycled and processed electronic waste powders directly into asphalt mixtures and binders; and the second approach was to chemically treat recycled and processed electronic waste powders with hydro-peroxide before blending into asphalt mixtures and binders. The chemical treatment of electronic waste (e-waste) powders was intended to strengthen molecular bonding between e-waste plastics and asphalt binders for improved low and high temperature performance. Superpave asphalt binder and mixture testing techniques were conducted to determine the rheological and mechanical performance of the e-waste modified asphalt binders and mixtures. This investigation included a limited emissions-performance assessment to compare electronic waste modified asphalt pavement mixture emissions using SimaPro and performance using MEPDG software. Carbon dioxide emissions for e-waste modified pavement mixtures were compared with conventional asphalt pavement mixtures using SimaPro. MEPDG analysis was used to determine rutting potential between the various e-waste modified pavement mixtures and the control asphalt mixture. The results from this investigation showed the following: treating the electronic waste plastics delayed the onset of tertiary flow for electronic waste mixtures, electronic waste mixtures showed some improvement in dynamic modulus results at low temperatures versus the control mixture, and tensile strength ratio values for treated e-waste asphalt mixtures were improved versus the control mixture.
Resumo:
A stereoselective total synthesis of (-)-cryptocaryol A () is described. Key features of the 17-step route include the use of three boron-mediated aldol reaction-reduction sequences to control all stereocenters and an Ando modification of the Horner-Wadsworth-Emmons olefination that permitted the installation of the Z double bond of the α-pyrone ring.
Resumo:
We investigated the influence of Pinus afforestation on the structure of leaf-litter ant communities in the southeastern Brazilian Atlantic Forest, studying an old secondary forest and a nearly 30 year-old never managed Pinus elliottii reforested area. A total of 12,826 individual ants distributed among 95 species and 32 genera were obtained from 50 1 m² samples/ habitat. Of these, 60 species were recorded in the pine plantation and 82 in the area of Atlantic forest; almost 50% of the species found in the secondary forest area were also present in the pine plantation. The number of species per sample was significantly higher in the secondary forest than in the pine plantation. Forest-adapted taxa are the most responsible for ant species richness differences between areas, and the pine plantation is richer in species classified as soil or litter omnivorous-dominants. The specialized ant predators registered in the pine plantation, as seven Dacetini, two Basiceros, two Attini and two Discothyrea, belong to widely distributed species. The NMDS (non-metric multidimensional scaling) ordination also suggested strong differences in similarity among samples of the two areas. Furthermore, this analysis indicated higher sample heterogeneity in the secondary forest, with two clusters of species, while in the pine plantation the species belong to a single cluster. We applied the ant mosaic hypothesis to explain the distribution of the leaf-litter fauna and spatial autocorrelation tests among samples. We argue that the results are likely related to differences in quality and distribution of the leaf-litter between the pine plantation and the secondary area.
Resumo:
The aim of this work was to verify the stability of the beta Co(2)Si phase in the Co-Si system. The samples were produced via arc-melting and characterized through Scanning Electron Microscopy (SEM) and Differential Thermal Analysis (DTA). The results have confirmed the stability of the beta Co(2)Si phase, however, a modification of the shape of beta CoSi phase field is proposed in order to fully explain the results.
Resumo:
Purpose: Use of lipid nanoemulsions as carriers of drugs for therapeutic or diagnostic purposes has been increasingly studied. Here, it was tested whether modifications of core particle constitution could affect the characteristics and biologic properties of lipid nanoemulsions. Methods: Three nanoemulsions were prepared using cholesteryl oleate, cholesteryl stearate, or cholesteryl linoleate as main core constituents. Particle size, stability, pH, peroxidation of the nanoemulsions, and cell survival and uptake by different cell lines were evaluated. Results: It was shown that cholesteryl stearate nanoemulsions had the greatest particle size and all three nanoemulsions were stable during the 237-day observation period. The pH of the three nanoemulsion preparations tended to decrease over time, but the decrease in pH of cholesteryl stearate was smaller than that of cholesteryl oleate and cholesteryl linoleate. Lipoperoxidation was greater in cholesteryl linoleate than in cholesteryl oleate and cholesteryl stearate. After four hours' incubation of human umbilical vein endothelial cells (HUVEC) with nanoemulsions, peroxidation was minimal in the presence of cholesteryl oleate and more pronounced with cholesteryl linoleate and cholesteryl stearate. In contrast, macrophage incubates showed the highest peroxidation rates with cholesteryl oleate. Cholesteryl linoleate induced the highest cell peroxidation rates, except in macrophages. Uptake of cholesteryl oleate nanoemulsion by HUVEC and fibroblasts was greater than that of cholesteryl linoleate and cholesteryl stearate. Uptake of the three nanoemulsions by monocytes was equal. Uptake of cholesteryl oleate and cholesteryl linoleate by macrophages was negligible, but macrophage uptake of cholesteryl stearate was higher. In H292 tumor cells, cholesteryl oleate showed the highest uptakes. HUVEC showed higher survival rates when incubated with cholesteryl stearate and smaller survival with cholesteryl linoleate. H292 survival was greater with cholesteryl stearate. Conclusion: Although all three nanoemulsion types were stable for a long period, considerable differences were observed in size, oxidation status, and cell survival and nanoemulsion uptake in all tested cell lines. Those differences may be helpful in protocol planning and interpretation of data from experiments with lipid nanoemulsions.
Resumo:
EuTe possesses the centrosymmetric crystal structure m3m of rocksalt type in which the second-harmonic generation is forbidden in electric dipole approximation but the third-harmonic generation (THG) is allowed. We studied the THG spectra of this material and observed several resonances in the vicinity of the band gap at 2.2-2.5 eV and at higher energies up to 4 eV, which are related to four-photon THG processes. The observed resonances are assigned to specific combinations of electronic transitions between the ground 4f(7) state at the top of the valence band and excited 4f(6)5d(1) states of Eu(2+) ions, which form the lowest energy conduction band. Temperature, magnetic field, and rotational anisotropy studies allowed us to distinguish crystallographic and magnetic-field-induced contributions to the THG. A strong modification of THG intensity for the 2.4 eV band and suppression of the THG for the 3.15 eV band was observed in applied magnetic field. Two main features of the THG spectra were assigned to 5d(t(2g)) and 5d(e(g)) subbands at 2.4 eV and 3.15 eV, respectively. A microscopic quantum-mechanical model of the THG response was developed and its conclusions are in qualitative agreement with the experimental results.
Resumo:
One of the standard generalized-gradient approximations (GGAs) in use in modern electronic-structure theory [Perdew-Burke-Ernzerhof (PBE) GGA] and a recently proposed modification designed specifically for solids (PBEsol) are identified as particular members of a family of functionals taking their parameters from different properties of homogeneous or inhomogeneous electron liquids. Three further members of this family are constructed and tested, together with the original PBE and PBEsol, for atoms, molecules, and solids. We find that PBE, in spite of its popularity in solid-state physics and quantum chemistry, is not always the best performing member of the family and that PBEsol, in spite of having been constructed specifically for solids, is not the best for solids. The performance of GGAs for finite systems is found to sensitively depend on the choice of constraints stemming from infinite systems. Guidelines both for users and for developers of density functionals emerge from this work.
Resumo:
The contribution of B meson decays to nonphotonic electrons, which are mainly produced by the semileptonic decays of heavy-flavor mesons, in p + p collisions at root s = 200 GeV has been measured using azimuthal correlations between nonphotonic electrons and hadrons. The extracted B decay contribution is approximately 50% at a transverse momentum of p(T) >= 5 GeV/c. These measurements constrain the nuclear modification factor for electrons from B and D meson decays. The result indicates that B meson production in heavy ion collisions is also suppressed at high p(T).
Resumo:
Results of the surface modification of Ti-16Si-4B powder alloy by nitrogen ion implantation are presented, together with the experimental description of the preparation of that powder by high-energy ball milling and hot pressing. The phase structure, chemical composition and morphology of sample surfaces were observed by utilizing X-ray diffractometer (XRD), atomic force microscope (AFM) and scanning electron microscopy (SEM). A tribological characterization was carried out with a ball-on-disc tribometer and an SEM. Friction coefficient is compared with the one obtained for Ti-6Al-4V alloy and the wear scars characterized by SEM/EDS (energy dispersive spectroscopy). The concentration profile of the detected elements have been investigated using Auger electron spectroscopy (AES) depth profiling. Our results show that a shallow implanted layer of oxygen and nitrogen ions were obtained at the Ti-16Si -4B alloy surface, sufficient to modify slightly its tribological properties. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.
Resumo:
Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from -40 degrees C to 35 degrees C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7-23.1) J g(-1) degrees C(-1), and was constant at temperatures above freezing (2.7 J g(-1) degrees C(-1)). Unfreezable water content varied from (0.174-0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Pitzer`s equation for the excess Gibbs energy of aqueous solutions of low-molecular electrolytes is extended to aqueous solutions of polyelectrolytes. The model retains the original form of Pitzer`s model (combining a long-range term, based on the Debye-Huckel equation, with a short-range term similar to the virial equation where the second osmotic virial coefficient depends on the ionic strength). The extension consists of two parts: at first, it is assumed that a constant fraction of the monomer units of the polyelectrolyte is dissociated, i.e., that fraction does not depend on the concentration of the polyelectrolyte, and at second, a modified expression for the ionic strength (wherein each charged monomer group is taken into account individually) is introduced. This modification is to account for the presence of charged polyelectrolyte chains, which cannot be regarded as punctual charges. The resulting equation was used to correlate osmotic coefficient data of aqueous solutions of a single polyelectrolyte as well as of binary mixtures of a single polyelectrolyte and a salt with low-molecular weight. It was additionally applied to correlate liquid-liquid equilibrium data of some aqueous two-phase systems that might form when a polyelectrolyte and another hydrophilic but neutral polymer are simultaneously dissolved in water. A good agreement between the experimental data and the correlation result is observed for all investigated systems. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Bovine bone ash is the main raw material for fabrication of bone china, a special kind of porcelain that has visual and mechanical advantages when compared to usual porcelains. The properties of bone china are highly dependent on the characteristics of the bone ash. However, despite a relatively common product, the science behind formulations and accepted fabrication procedures for bone china is not completely understood and deserves attention for future processing optimizations. In this paper, the influence of the preparation steps (firing, milling, and washing of the bones) on the physicochemical properties of bone ash particles was investigated. Bone powders heat-treated at temperatures varying from 700 to 1000 degrees C were washed and milled. The obtained materials were analyzed in terms of particle size distribution, chemical composition, density, specific surface area, FTIR spectroscopy, dynamic electrophoretic mobility, crystalline phases and scanning electron microscopy. The results indicated that bone ash does not significantly change in terms of chemistry and physical features at calcination temperatures above 700 degrees C. After washing in special conditions, one could only observe hydroxyapatite in the diffraction pattern. By FTIR it was observed that carbonate seems to be mainly concentrated on the surface of the powders. Since this compound can influence in the dispersion stability, and consequently in the quality of the final bone china product, and considering optimal washing parameters based on the dynamic electrophoretic mobility results, we describe a procedure for surface cleaning. (c) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
PEGylation is one of the most promising and extensively studied strategies for improving the pharmacological properties of proteins as well as their physical and thermal stability. Purified lysozyme obtained from hen egg white by batch mode was modified by PEGylation with methoxypolyethyleneglycol succinimidyl succinato (mPEG-SS, MW 5000). The conjugates produced retained full enzyme activity with the substrate glycol chitosan, independent of degree of enzyme modification, although lysozyme activity with the substrate Micrococcus lysodeikticus was altered according to the degree of modification. The conjugate with a low degree of modification by mPEG-SS retained 67% of its enzyme activity with the M. lysodeikticus substrate. The mPEG-SS was also shown to be a highly reactive polymer. The effects of pH and temperature on PEGylated lysozymes indicated that the conjugate was active over a wide pH range and was stable up to 50 degrees C. This conjugate also showed resistance to proteolytic degradation, remained stable in human serum, and displayed greater antimicrobial activity than native lysozyme against Gram-negative bacteria.
Resumo:
Background. Plasmodium falciparum and Plasmodium vivax are responsible for most of the global burden of malaria. Although the accentuated pathogenicity of P. falciparum occurs because of sequestration of the mature erythrocytic forms in the microvasculature, this phenomenon has not yet been noted in P. vivax. The increasing number of severe manifestations of P. vivax infections, similar to those observed for severe falciparum malaria, suggests that key pathogenic mechanisms (eg, cytoadherence) might be shared by the 2 parasites. Methods. Mature P. vivax-infected erythrocytes (Pv-iEs) were isolated from blood samples collected from 34 infected patients. Pv-iEs enriched on Percoll gradients were used in cytoadhesion assays with human lung endothelial cells, Saimiri brain endothelial cells, and placental cryosections. Results. Pv-iEs were able to cytoadhere under static and flow conditions to cells expressing endothelial receptors known to mediate the cytoadhesion of P. falciparum. Although Pv-iE cytoadhesion levels were 10-fold lower than those observed for P. falciparum-infected erythrocytes, the strength of the interaction was similar. Cytoadhesion of Pv-iEs was in part mediated by VIR proteins, encoded by P. vivax variant genes (vir), given that specific antisera inhibited the Pv-iE-endothelial cell interaction. Conclusions. These observations prompt a modification of the current paradigms of the pathogenesis of malaria and clear the way to investigate the pathophysiology of P. vivax infections.