995 resultados para Microbiology|Biochemistry|Organic chemistry
Resumo:
A novel approach to diene based quinolizidines, using an intramolecular Heck reaction in which the vinyl bromide double bond undergoes inversion of configuration, is reported. These quinolizidines have previously been proposed as tentative structures for homopumiliotoxin alkaloids 233F and 235C. The mass spectral data of the synthetic materials were different to those of the natural products confirming that the original structures need to be revised. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
For the first time, a simple and validated reversed-phase liquid chromatography (RP-LC) with fluorescence detection has been developed for the simultaneous analysis of glutamate (Glu), ?-aminobutyric acid (GABA), glycine (Gly) and taurine (Tau) in Wistar and tremor rats brain synaptosomes. The samples were separated on a C18 analytical column with gradient elution of methanol and 0.1 mol L-1 potassium acetate at a flow rate of 1 mL min-1. Total run time was approximately 25 min. All calibration curves exhibited good linearity (r 2 > 0.999) within test ranges. The reproducibility was estimated by intra-and inter-day assays and RSD values were less than 2.48%. The recoveries were between 96.32 and 105.21%. The method was successfully applied to the quantification of amino acids in Wistar and tremor rats brain synaptosomes. Through this developed protocol, the levels of Glu in hippocampal and prefrontal cortical synaptosomes of tremor rats were both significantly elevated than those of adult Wistar rats whereas significantly decreased concentrations of GABA and Gly were observed in the hippocampal region of tremor rats without evident difference in the prefrontal cortex between experimental and control groups. In addition, our studies also showed a marked elevation of Tau in tremor rats hippocampal synaptosomes although there was no pronounced difference in the prefrontal cortical region of Wistar and tremor rats.
Resumo:
Biotransformation of 3-substituted and 2,5-disubstituted phenols, using whole cells of P. putida UV4, yielded cyclohexenone cis-diols as single enantiomers; their structures and absolute configurations have been determined by NMR and ECD spectroscopy, X-ray crystallography, and stereochemical correlation involving a four step chemoenzymatic synthesis from the corresponding cis-dihydrodiol metabolites. An active site model has been proposed, to account for the formation of enantiopure cyclohexenone cis-diols with opposite absolute configurations.
Resumo:
2'-Beta-D-arabinouridine (AraU), the uridine analogue of the anticancer agent AraC, was synthesized and evaluated for antiviral activity and cytotoxicity. In addition, a series of AraU monophosphate prodrugs in the form of triester phosphoramidates (ProTides) were also synthesized and tested against a range of viruses, leukaemia and solid tumour cell lines. Unfortunately, neither the parent compound (AraU) nor any of its ProTides showed antiviral activity, nor potent inhibitory activity against any of the cancer cell lines. Therefore, the metabolism of AraU phosphoramidates to release AraU monophosphate was investigated. The results showed carboxypeptidase Y, hog liver esterase and crude CEM tumor cell extracts to hydrolyse the ester motif of phosphoramidates with subsequent loss of the aryl group, while molecular modelling studies suggested that the AraU l-alanine aminoacyl phosphate derivative might not be a good substrate for the phosphoramidase enzyme Hint-1. These findings are in agreement with the observed disappearance of intact prodrug and concomitant appearance of the corresponding phosphoramidate intermediate derivative in CEM cell extracts without measurable formation of araU monophosphate. These findings may explain the poor antiviral/cytostatic potential of the prodrugs.
Resumo:
A novel acceptor substrate for galactosyltransferase was synthesized containing GlcNAcalpha-pyrophosphate, covalently bound to a hydrophobic phenoxyundecyl moiety (GlcNAc alpha-O-PO(3)-PO(3)-(CH(2))(11)-O-Phenyl). The new substrate was used to develop an assay for a galactosyltransferase activity from Escherichia coli strain VW187 that is involved in lipopolysaccharide synthesis and has not been studied by others. We showed that Gal was transferred from UDP-Gal to the novel acceptor substrate. This was a significant improvement over our previous preliminary assays of the enzyme using endogenous substrate, and showed that these synthetic substrates are useful for assaying enzymes that utilize lipid-bound substrates in O-chain synthesis in Gram-negative bacteria.
Resumo:
Strain promoted cycloaddition is presented as a tool for RNA conjugation on the solid phase; RNA-cyclooctyne conjugates are prepared by cycloaddition to both azide (strain-promoted azide-alkyne cycloaddition, SPAAC) and nitrile oxide dipoles (strain-promoted nitrile oxide-alkyne cycloaddition, SPNOAC). The conjugation is compatible with 2'-OMe blocks and with 2'-O-TBDMS protection on the ribose moieties of the sugar. Nitrile oxide dipoles are found to be more reactive click partners than azides. The conjugation proceeds within 10 min in aqueous solvents, at room temperature without any metal catalyst and tolerates dipoles of varying steric bulk and electronic demands, including pyrenyl, coumarin and dabcyl derivatives. © 2012 The Royal Society of Chemistry.
Resumo:
Single nucleotide polymorphisms within a sequence of a gene associated with prostate cancer were identified using oligodeoxynucleotide probe sequences bearing internal anthracene fluorophores proximal to the SNP site. Depending upon the nature of the synthesised target sequences, probe-target duplex formation could lead to enhanced or attenuated fluorescence emission from the anthracene, enabling detection of a proximal base-pair as either matching or mismatching. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis and in vitro evaluation of four cationic lipid gene delivery vectors, characterized by acyclic or macrocyclic, and saturated or unsaturated hydrophobic regions, is described. The synthesis employed standard protocols, including ring-closing metathesis for macrocyclic lipid construction. All lipoplexes studied, formulated from plasmid DNA and a liposome composed of a synthesized lipid, 1,2-dimyristoyl-sn-glycero-3-ethylphosphocholine (EPC), and either 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) or cholesterol as co-lipid, exhibited plasmid DNA binding and protection from DNase I degradation, and concentration dependent cytotoxicity using Chinese hamster ovary-K1 cells. The transfection efficiency of formulations with cholesterol outperformed those with DOPE, and in many cases the EPC/cholesterol control, and formulations with a macrocyclic lipid (+/- 10:1) outperformed their acyclic counterparts (+/- 3:1).
Resumo:
Lipid peroxidation is a common feature of many chemical and biological processes, and is governed by a complex kinetic scheme. A fundamental stage in kinetic investigations of lipid peroxidation is the accurate determination of the rate of peroxidation, which in many instances is heavily reliant on the method of finite differences. Such numerical approximations of the first derivative are commonly employed in commercially available software, despite suffering from considerable inaccuracy due to rounding and truncation errors. As a simple solution to this, we applied three empirical sigmoid functions (viz. the Prout-Tompkins, Richards & Gompertz functions) to data obtained from the AAPH-mediated peroxidation of aqueous linoleate liposomes in the presence of increasing concentrations of Trolox, evaluating the curve fitting parameters using the widely available Microsoft Excel Solver add-in. We have demonstrated that the five-parameter Richards' function provides an excellent model for this peroxidation, and when applied to the determination of fundamental rate constants, produces results in keeping with those available in the literature. Overall, we present a series of equations, derived from the Richards' function, which enables direct evaluation of the kinetic measures of peroxidation. This procedure has applicability not only to investigations of lipid peroxidation, but to any system exhibiting sigmoid kinetics.
Resumo:
Chiral enamides5f-i were found to react with pyrylium ylides to give cycloadducts 6d-i in good yields with an excellent level of stereoselectivity. The chiral auxiliary was successfully removed on hydrogenolysis of compound 6f in continuous flow (H-Cube) resulting in the first asymmetric synthesis of complex amine 8.
Resumo:
A new formal total synthesis of (-)-echinosporin has been developed based upon the Padwa [3 + 2]-cycloadditive elimination reaction of allenylsulfone 4 with the D-glucose-derived enone 14 which provides cycloadduct 12.
Resumo:
Amphibian skin is a rich and unique source of novel bioactive peptides most of which are endowed with either antimicrobial or pharmacological properties. Here we report the identification and structural characterization of a novel peptide, named senegalin, which possesses both activities. Senegalin is a hexadecapeptide amide (FLPFLIPALTSLISSL-NH2) of unique primary structure found in the skin secretion of the African running frog, Kassina senegalensis. The structure of the biosynthetic precursor of senegalin, deduced from cloned skin cDNA, consists of 76 amino acid residues and displays the typical domain organization of an amphibian skin peptide precursor. Both natural senegalin and its synthetic replicate
displayed antimicrobial and myotropic activities. Senegalin was active against Staphylococcus aureus (MIC 50µM) and Candida albicans (MIC 150µM) but was nonhaemolytic at concentrations up to and including 150µM. In contrast, senegalin induced a dose-dependent contraction of rat urinary bladder smooth muscle (EC50 2.9nM) and a dosedependent relaxation of rat tail artery smooth muscle (EC50 37.7nM). Senegalin thus represents a prototype biologically-active amphibian skin peptide and illustrates the fact thatamphibian skin secretion peptidomes continue to be unique sources of such molecules.
Resumo:
Enzymatic cis-dihydroxylation of benzo[b]thiophene, benzo[b]furan and several methyl substituted derivatives was found to occur in both the carbocyclic and heterocyclic rings. Relative and absolute configurations and enantiopurities of the resulting dihydrodiols were determined. Hydrogenation of the alkene bond in carbocyclic cis-dihydrodiols and ring-opening epimerization/reduction reactions of heterocyclic cis/trans-dihydrodiols were also studied. The relatively stable heterocyclic dihydrodiols of benzo[b]thiophene and benzo[b]furan showed a strong preference for the trans configuration in aqueous solutions. The 2,3-dihydrodiol metabolite of benzo[b]thiophene was utilized as a precursor in the chemoenzymatic synthesis of the unstable arene oxide, benzo[b]thiophene 2,3-oxide.
Resumo:
A highly efficient palladium catalyzed decarboxylative allylic rearrangement of alloc indoles has been developed. This can also be combined with a Suzuki–Miyaura cross-coupling reaction in a single pot transformation. Substituted alloc groups and benzylic variants have also been demonstrated alongside promising initial results on the enantioselective variant.
Resumo:
2-Deoxy-C-nucleosides are a subcategory of C-nucleosides that has not been explored extensively, largely because the synthesis is less facile. Flexible synthetic procedures giving access to 2-deoxy-C-nucleosides are therefore of interest. To exemplify the versatility and highlight the limitations of a synthetic route recently developed to that effect, the first synthesis of 2-deoxy benzamide riboside is reported. Biological properties of this novel C-nucleoside are also discussed. (c) 2012 Elsevier Ltd. All rights reserved.