982 resultados para Mathematical physics.
Resumo:
We study the spectral properties of the two-dimensional Dirac operator on bounded domains together with the appropriate boundary conditions which provide a (continuous) model for graphene nanoribbons. These are of two types, namely, the so-called armchair and zigzag boundary conditions, depending on the line along which the material was cut. In the former case, we show that the spectrum behaves in what might be called a classical way; while in the latter, we prove the existence of a sequence of finite multiplicity eigenvalues converging to zero and which correspond to edge states.
Resumo:
We analyze perturbations of the harmonic oscillator type operators in a Hilbert space H, i.e. of the self-adjoint operator with simple positive eigenvalues μ k satisfying μ k+1 − μ k ≥ Δ > 0. Perturbations are considered in the sense of quadratic forms. Under a local subordination assumption, the eigenvalues of the perturbed operator become eventually simple and the root system contains a Riesz basis.
Resumo:
We propose giving the mathematical concept of the pseudospectrum a central role in quantum mechanics with non-Hermitian operators. We relate pseudospectral properties to quasi-Hermiticity, similarity to self-adjoint operators, and basis properties of eigenfunctions. The abstract results are illustrated by unexpected wild properties of operators familiar from PT -symmetric quantum mechanics.
Resumo:
Among the classical operators of mathematical physics the Laplacian plays an important role due to the number of different situations that can be modelled by it. Because of this a great effort has been made by mathematicians as well as by engineers to master its properties till the point that nearly everything has been said about them from a qualitative viewpoint. Quantitative results have also been obtained through the use of the new numerical techniques sustained by the computer. Finite element methods and boundary techniques have been successfully applied to engineering problems as can be seen in the technical literature (for instance [ l ] , [2], [3] . Boundary techniques are especially advantageous in those cases in which the main interest is concentrated on what is happening at the boundary. This situation is very usual in potential problems due to the properties of harmonic functions. In this paper we intend to show how a boundary condition different from the classical, but physically sound, is introduced without any violence in the discretization frame of the Boundary Integral Equation Method. The idea will be developed in the context of heat conduction in axisymmetric problems but it is hoped that its extension to other situations is straightforward. After the presentation of the method several examples will show the capabilities of modelling a physical problem.
Resumo:
We consider the classification up to a Möbius transformation of real linearizable and integrable partial difference equations with dispersion defined on a square lattice by the multiscale reduction around their harmonic solution. We show that the A1, A2, and A3 linearizability and integrability conditions constrain the number of parameters in the equation, but these conditions are insufficient for a complete characterization of the subclass of multilinear equations on a square lattice.
Resumo:
This paper refers to the numerical solution of the classical Darcy's problem of plane fluid through isotropic media. Regarding the numerical procedure,the Laplace equation, is a classical one in mathematical physics and several procedures have been devised in order to solve it. So as to show the capability of the method, the paper presents some exemples.
Resumo:
A first-order Lagrangian L ∇ variationally equivalent to the second-order Einstein- Hilbert Lagrangian is introduced. Such a Lagrangian depends on a symmetric linear connection, but the dependence is covariant under diffeomorphisms. The variational problem defined by L ∇ is proved to be regular and its Hamiltonian formulation is studied, including its covariant Hamiltonian attached to ∇ .
Resumo:
In this dissertation we explore the features of a Gauge Field Theory formulation for continuous spin particles (CSP). To make our discussion as self-contained as possible, we begin by introducing all the basics of Group Theory - and representation theory - which are necessary to understand where the CSP come from. We then apply what we learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point where we are able to construct the CSP representation. Finally, after a brief review of the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm of CSP Field Theory. We study and explore all the local symmetries of the CSP action, as well as all of the nuances associated with the introduction of an enlarged spacetime, which is used to formulate the CSP action. We end our discussion by showing that the physical contents of the CSP action are precisely what we expected them to be, in comparison to our Group Theoretical approach.
Resumo:
Mode of access: Internet.
Resumo:
Über die Fredholmschen Gleichungen.--Anwendung der Theorie der Integralgleichungen auf die Flutbewegung des Meeres.--Anwendung der Integralgleichungen auf Hertzsche Wellen.--Über die Reduktion der Abelschen Integrale und die Theorie der Fuchsschen Funktionen.--Über transfinite Zahlen.--La mécanique nouvelle.
Resumo:
Mode of access: Internet.
Resumo:
Vols. 13-62 consist of Research papers no. RP691-RP2961.
Resumo:
Mode of access: Internet.