13 resultados para Mathematical physics.
em CaltechTHESIS
Resumo:
The theories of relativity and quantum mechanics, the two most important physics discoveries of the 20th century, not only revolutionized our understanding of the nature of space-time and the way matter exists and interacts, but also became the building blocks of what we currently know as modern physics. My thesis studies both subjects in great depths --- this intersection takes place in gravitational-wave physics.
Gravitational waves are "ripples of space-time", long predicted by general relativity. Although indirect evidence of gravitational waves has been discovered from observations of binary pulsars, direct detection of these waves is still actively being pursued. An international array of laser interferometer gravitational-wave detectors has been constructed in the past decade, and a first generation of these detectors has taken several years of data without a discovery. At this moment, these detectors are being upgraded into second-generation configurations, which will have ten times better sensitivity. Kilogram-scale test masses of these detectors, highly isolated from the environment, are probed continuously by photons. The sensitivity of such a quantum measurement can often be limited by the Heisenberg Uncertainty Principle, and during such a measurement, the test masses can be viewed as evolving through a sequence of nearly pure quantum states.
The first part of this thesis (Chapter 2) concerns how to minimize the adverse effect of thermal fluctuations on the sensitivity of advanced gravitational detectors, thereby making them closer to being quantum-limited. My colleagues and I present a detailed analysis of coating thermal noise in advanced gravitational-wave detectors, which is the dominant noise source of Advanced LIGO in the middle of the detection frequency band. We identified the two elastic loss angles, clarified the different components of the coating Brownian noise, and obtained their cross spectral densities.
The second part of this thesis (Chapters 3-7) concerns formulating experimental concepts and analyzing experimental results that demonstrate the quantum mechanical behavior of macroscopic objects - as well as developing theoretical tools for analyzing quantum measurement processes. In Chapter 3, we study the open quantum dynamics of optomechanical experiments in which a single photon strongly influences the quantum state of a mechanical object. We also explain how to engineer the mechanical oscillator's quantum state by modifying the single photon's wave function.
In Chapters 4-5, we build theoretical tools for analyzing the so-called "non-Markovian" quantum measurement processes. Chapter 4 establishes a mathematical formalism that describes the evolution of a quantum system (the plant), which is coupled to a non-Markovian bath (i.e., one with a memory) while at the same time being under continuous quantum measurement (by the probe field). This aims at providing a general framework for analyzing a large class of non-Markovian measurement processes. Chapter 5 develops a way of characterizing the non-Markovianity of a bath (i.e.,whether and to what extent the bath remembers information about the plant) by perturbing the plant and watching for changes in the its subsequent evolution. Chapter 6 re-analyzes a recent measurement of a mechanical oscillator's zero-point fluctuations, revealing nontrivial correlation between the measurement device's sensing noise and the quantum rack-action noise.
Chapter 7 describes a model in which gravity is classical and matter motions are quantized, elaborating how the quantum motions of matter are affected by the fact that gravity is classical. It offers an experimentally plausible way to test this model (hence the nature of gravity) by measuring the center-of-mass motion of a macroscopic object.
The most promising gravitational waves for direct detection are those emitted from highly energetic astrophysical processes, sometimes involving black holes - a type of object predicted by general relativity whose properties depend highly on the strong-field regime of the theory. Although black holes have been inferred to exist at centers of galaxies and in certain so-called X-ray binary objects, detecting gravitational waves emitted by systems containing black holes will offer a much more direct way of observing black holes, providing unprecedented details of space-time geometry in the black-holes' strong-field region.
The third part of this thesis (Chapters 8-11) studies black-hole physics in connection with gravitational-wave detection.
Chapter 8 applies black hole perturbation theory to model the dynamics of a light compact object orbiting around a massive central Schwarzschild black hole. In this chapter, we present a Hamiltonian formalism in which the low-mass object and the metric perturbations of the background spacetime are jointly evolved. Chapter 9 uses WKB techniques to analyze oscillation modes (quasi-normal modes or QNMs) of spinning black holes. We obtain analytical approximations to the spectrum of the weakly-damped QNMs, with relative error O(1/L^2), and connect these frequencies to geometrical features of spherical photon orbits in Kerr spacetime. Chapter 11 focuses mainly on near-extremal Kerr black holes, we discuss a bifurcation in their QNM spectra for certain ranges of (l,m) (the angular quantum numbers) as a/M → 1. With tools prepared in Chapter 9 and 10, in Chapter 11 we obtain an analytical approximate for the scalar Green function in Kerr spacetime.
Resumo:
In the quest to develop viable designs for third-generation optical interferometric gravitational-wave detectors, one strategy is to monitor the relative momentum or speed of the test-mass mirrors, rather than monitoring their relative position. The most straightforward design for a speed-meter interferometer that accomplishes this is described and analyzed in Chapter 2. This design (due to Braginsky, Gorodetsky, Khalili, and Thorne) is analogous to a microwave-cavity speed meter conceived by Braginsky and Khalili. A mathematical mapping between the microwave speed meter and the optical interferometric speed meter is developed and used to show (in accord with the speed being a quantum nondemolition observable) that in principle the interferometric speed meter can beat the gravitational-wave standard quantum limit (SQL) by an arbitrarily large amount, over an arbitrarily wide range of frequencies . However, in practice, to reach or beat the SQL, this specific speed meter requires exorbitantly high input light power. The physical reason for this is explored, along with other issues such as constraints on performance due to optical dissipation.
Chapter 3 proposes a more sophisticated version of a speed meter. This new design requires only a modest input power and appears to be a fully practical candidate for third-generation LIGO. It can beat the SQL (the approximate sensitivity of second-generation LIGO interferometers) over a broad range of frequencies (~ 10 to 100 Hz in practice) by a factor h/hSQL ~ √W^(SQL)_(circ)/Wcirc. Here Wcirc is the light power circulating in the interferometer arms and WSQL ≃ 800 kW is the circulating power required to beat the SQL at 100 Hz (the LIGO-II power). If squeezed vacuum (with a power-squeeze factor e-2R) is injected into the interferometer's output port, the SQL can be beat with a much reduced laser power: h/hSQL ~ √W^(SQL)_(circ)/Wcirce-2R. For realistic parameters (e-2R ≃ 10 and Wcirc ≃ 800 to 2000 kW), the SQL can be beat by a factor ~ 3 to 4 from 10 to 100 Hz. [However, as the power increases in these expressions, the speed meter becomes more narrow band; additional power and re-optimization of some parameters are required to maintain the wide band.] By performing frequency-dependent homodyne detection on the output (with the aid of two kilometer-scale filter cavities), one can markedly improve the interferometer's sensitivity at frequencies above 100 Hz.
Chapters 2 and 3 are part of an ongoing effort to develop a practical variant of an interferometric speed meter and to combine the speed meter concept with other ideas to yield a promising third- generation interferometric gravitational-wave detector that entails low laser power.
Chapter 4 is a contribution to the foundations for analyzing sources of gravitational waves for LIGO. Specifically, it presents an analysis of the tidal work done on a self-gravitating body (e.g., a neutron star or black hole) in an external tidal field (e.g., that of a binary companion). The change in the mass-energy of the body as a result of the tidal work, or "tidal heating," is analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interaction energy contained within the body's local asymptotic rest frame is gauge dependent. This is analogous to Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy, but the work done on the body is independent of that localization. These conclusions play a role in analyses, by others, of the dynamics and stability of the inspiraling neutron-star binaries whose gravitational waves are likely to be seen and studied by LIGO.
Resumo:
The problem of the finite-amplitude folding of an isolated, linearly viscous layer under compression and imbedded in a medium of lower viscosity is treated theoretically by using a variational method to derive finite difference equations which are solved on a digital computer. The problem depends on a single physical parameter, the ratio of the fold wavelength, L, to the "dominant wavelength" of the infinitesimal-amplitude treatment, L_d. Therefore, the natural range of physical parameters is covered by the computation of three folds, with L/L_d = 0, 1, and 4.6, up to a maximum dip of 90°.
Significant differences in fold shape are found among the three folds; folds with higher L/L_d have sharper crests. Folds with L/L_d = 0 and L/L_d = 1 become fan folds at high amplitude. A description of the shape in terms of a harmonic analysis of inclination as a function of arc length shows this systematic variation with L/L_d and is relatively insensitive to the initial shape of the layer. This method of shape description is proposed as a convenient way of measuring the shape of natural folds.
The infinitesimal-amplitude treatment does not predict fold-shape development satisfactorily beyond a limb-dip of 5°. A proposed extension of the treatment continues the wavelength-selection mechanism of the infinitesimal treatment up to a limb-dip of 15°; after this stage the wavelength-selection mechanism no longer operates and fold shape is mainly determined by L/L_d and limb-dip.
Strain-rates and finite strains in the medium are calculated f or all stages of the L/L_d = 1 and L/L_d = 4.6 folds. At limb-dips greater than 45° the planes of maximum flattening and maximum flattening rat e show the characteristic orientation and fanning of axial-plane cleavage.
Resumo:
The dissertation is concerned with the mathematical study of various network problems. First, three real-world networks are considered: (i) the human brain network (ii) communication networks, (iii) electric power networks. Although these networks perform very different tasks, they share similar mathematical foundations. The high-level goal is to analyze and/or synthesis each of these systems from a “control and optimization” point of view. After studying these three real-world networks, two abstract network problems are also explored, which are motivated by power systems. The first one is “flow optimization over a flow network” and the second one is “nonlinear optimization over a generalized weighted graph”. The results derived in this dissertation are summarized below.
Brain Networks: Neuroimaging data reveals the coordinated activity of spatially distinct brain regions, which may be represented mathematically as a network of nodes (brain regions) and links (interdependencies). To obtain the brain connectivity network, the graphs associated with the correlation matrix and the inverse covariance matrix—describing marginal and conditional dependencies between brain regions—have been proposed in the literature. A question arises as to whether any of these graphs provides useful information about the brain connectivity. Due to the electrical properties of the brain, this problem will be investigated in the context of electrical circuits. First, we consider an electric circuit model and show that the inverse covariance matrix of the node voltages reveals the topology of the circuit. Second, we study the problem of finding the topology of the circuit based on only measurement. In this case, by assuming that the circuit is hidden inside a black box and only the nodal signals are available for measurement, the aim is to find the topology of the circuit when a limited number of samples are available. For this purpose, we deploy the graphical lasso technique to estimate a sparse inverse covariance matrix. It is shown that the graphical lasso may find most of the circuit topology if the exact covariance matrix is well-conditioned. However, it may fail to work well when this matrix is ill-conditioned. To deal with ill-conditioned matrices, we propose a small modification to the graphical lasso algorithm and demonstrate its performance. Finally, the technique developed in this work will be applied to the resting-state fMRI data of a number of healthy subjects.
Communication Networks: Congestion control techniques aim to adjust the transmission rates of competing users in the Internet in such a way that the network resources are shared efficiently. Despite the progress in the analysis and synthesis of the Internet congestion control, almost all existing fluid models of congestion control assume that every link in the path of a flow observes the original source rate. To address this issue, a more accurate model is derived in this work for the behavior of the network under an arbitrary congestion controller, which takes into account of the effect of buffering (queueing) on data flows. Using this model, it is proved that the well-known Internet congestion control algorithms may no longer be stable for the common pricing schemes, unless a sufficient condition is satisfied. It is also shown that these algorithms are guaranteed to be stable if a new pricing mechanism is used.
Electrical Power Networks: Optimal power flow (OPF) has been one of the most studied problems for power systems since its introduction by Carpentier in 1962. This problem is concerned with finding an optimal operating point of a power network minimizing the total power generation cost subject to network and physical constraints. It is well known that OPF is computationally hard to solve due to the nonlinear interrelation among the optimization variables. The objective is to identify a large class of networks over which every OPF problem can be solved in polynomial time. To this end, a convex relaxation is proposed, which solves the OPF problem exactly for every radial network and every meshed network with a sufficient number of phase shifters, provided power over-delivery is allowed. The concept of “power over-delivery” is equivalent to relaxing the power balance equations to inequality constraints.
Flow Networks: In this part of the dissertation, the minimum-cost flow problem over an arbitrary flow network is considered. In this problem, each node is associated with some possibly unknown injection, each line has two unknown flows at its ends related to each other via a nonlinear function, and all injections and flows need to satisfy certain box constraints. This problem, named generalized network flow (GNF), is highly non-convex due to its nonlinear equality constraints. Under the assumption of monotonicity and convexity of the flow and cost functions, a convex relaxation is proposed, which always finds the optimal injections. A primary application of this work is in the OPF problem. The results of this work on GNF prove that the relaxation on power balance equations (i.e., load over-delivery) is not needed in practice under a very mild angle assumption.
Generalized Weighted Graphs: Motivated by power optimizations, this part aims to find a global optimization technique for a nonlinear optimization defined over a generalized weighted graph. Every edge of this type of graph is associated with a weight set corresponding to the known parameters of the optimization (e.g., the coefficients). The motivation behind this problem is to investigate how the (hidden) structure of a given real/complex valued optimization makes the problem easy to solve, and indeed the generalized weighted graph is introduced to capture the structure of an optimization. Various sufficient conditions are derived, which relate the polynomial-time solvability of different classes of optimization problems to weak properties of the generalized weighted graph such as its topology and the sign definiteness of its weight sets. As an application, it is proved that a broad class of real and complex optimizations over power networks are polynomial-time solvable due to the passivity of transmission lines and transformers.
Resumo:
Cosmic birefringence (CB)---a rotation of photon-polarization plane in vacuum---is a generic signature of new scalar fields that could provide dark energy. Previously, WMAP observations excluded a uniform CB-rotation angle larger than a degree.
In this thesis, we develop a minimum-variance--estimator formalism for reconstructing direction-dependent rotation from full-sky CMB maps, and forecast more than an order-of-magnitude improvement in sensitivity with incoming Planck data and future satellite missions. Next, we perform the first analysis of WMAP-7 data to look for rotation-angle anisotropies and report null detection of the rotation-angle power-spectrum multipoles below L=512, constraining quadrupole amplitude of a scale-invariant power to less than one degree. We further explore the use of a cross-correlation between CMB temperature and the rotation for detecting the CB signal, for different quintessence models. We find that it may improve sensitivity in case of marginal detection, and provide an empirical handle for distinguishing details of new physics indicated by CB.
We then consider other parity-violating physics beyond standard models---in particular, a chiral inflationary-gravitational-wave background. We show that WMAP has no constraining power, while a cosmic-variance--limited experiment would be capable of detecting only a large parity violation. In case of a strong detection of EB/TB correlations, CB can be readily distinguished from chiral gravity waves.
We next adopt our CB analysis to investigate patchy screening of the CMB, driven by inhomogeneities during the Epoch of Reionization (EoR). We constrain a toy model of reionization with WMAP-7 data, and show that data from Planck should start approaching interesting portions of the EoR parameter space and can be used to exclude reionization tomographies with large ionized bubbles.
In light of the upcoming data from low-frequency radio observations of the redshifted 21-cm line from the EoR, we examine probability-distribution functions (PDFs) and difference PDFs of the simulated 21-cm brightness temperature, and discuss the information that can be recovered using these statistics. We find that PDFs are insensitive to details of small-scale physics, but highly sensitive to the properties of the ionizing sources and the size of ionized bubbles.
Finally, we discuss prospects for related future investigations.
Resumo:
Time-of-flight measurements of energetic He atoms, field ionization of cryogenic liquid helium clusters, and time-of-flight and REMPI spectroscopy of radical salt clusters were investigated experimentally. The excited He atoms were generated in a corona discharge. Two strong neutral peaks were observed, accompanied by a prompt photon peak and a charged peak. All peaks were correlated with the pulsing of the discharge. The neutral hyperthermal and metastable atoms were formed by different mechanisms at different stages of the corona discharge. Positively charged helium droplets were produced by ionization of liquid helium in an electrostatic spraying experiment. The fluid emerging from a thin glass capillary was ionized by a high voltage applied to a needle inside the capillary. Fine droplets (less than 10 µm in diameter) were produced in showers with currents as high as 0.4 µA at 2-4 kV. The high currents resulting from field ionization in helium and the low surface tension of He I, led to charge densities that greatly exceeded the Rayleigh limit, thus resulting in coulombic explosion of the liquid. In contrast, liquid nitrogen formed a well-defined Taylor cone with droplets having diameters comparable to the jet (≈100 µm) at lower currents (10 nA) and higher voltages (8 kV). The metal-halide clusters of calcium and chlorine were generated by laser ablation of calcium metal in a Ar/CCl4 expansion. A visible spectrum of the Ca2Cl3 cluster was observed from 651 to 630 nm by 1 +1' REMPI. The spectra were composed of a strong origin band at 15 350.8 cm-1 and several weak vibronic bands. Density functional calculations predicted three minimum energy isomers. The spectrum was assigned to the 2B2 ← X 2A1 transition of a planar C2V structure having a ring of two Cl and two Ca atoms and a terminal Cl atom. The ring isomer of Ca2Cl3 has the unpaired electron localized on one Ca2+ ion to form a Ca+ chromophore. A second electronic band of Ca2Cl3 was observed at 720 nm. The band is sharply different from the 650 nm band and likely due to a different isomer.
Resumo:
The works presented in this thesis explore a variety of extensions of the standard model of particle physics which are motivated by baryon number (B) and lepton number (L), or some combination thereof. In the standard model, both baryon number and lepton number are accidental global symmetries violated only by non-perturbative weak effects, though the combination B-L is exactly conserved. Although there is currently no evidence for considering these symmetries as fundamental, there are strong phenomenological bounds restricting the existence of new physics violating B or L. In particular, there are strict limits on the lifetime of the proton whose decay would violate baryon number by one unit and lepton number by an odd number of units.
The first paper included in this thesis explores some of the simplest possible extensions of the standard model in which baryon number is violated, but the proton does not decay as a result. The second paper extends this analysis to explore models in which baryon number is conserved, but lepton flavor violation is present. Special attention is given to the processes of μ to e conversion and μ → eγ which are bound by existing experimental limits and relevant to future experiments.
The final two papers explore extensions of the minimal supersymmetric standard model (MSSM) in which both baryon number and lepton number, or the combination B-L, are elevated to the status of being spontaneously broken local symmetries. These models have a rich phenomenology including new collider signatures, stable dark matter candidates, and alternatives to the discrete R-parity symmetry usually built into the MSSM in order to protect against baryon and lepton number violating processes.
Resumo:
In the measurement of the Higgs Boson decaying into two photons the parametrization of an appropriate background model is essential for fitting the Higgs signal mass peak over a continuous background. This diphoton background modeling is crucial in the statistical process of calculating exclusion limits and the significance of observations in comparison to a background-only hypothesis. It is therefore ideal to obtain knowledge of the physical shape for the background mass distribution as the use of an improper function can lead to biases in the observed limits. Using an Information-Theoretic (I-T) approach for valid inference we apply Akaike Information Criterion (AIC) as a measure of the separation for a fitting model from the data. We then implement a multi-model inference ranking method to build a fit-model that closest represents the Standard Model background in 2013 diphoton data recorded by the Compact Muon Solenoid (CMS) experiment at the Large Hadron Collider (LHC). Potential applications and extensions of this model-selection technique are discussed with reference to CMS detector performance measurements as well as in potential physics analyses at future detectors.
Resumo:
Kohn-Sham density functional theory (KSDFT) is currently the main work-horse of quantum mechanical calculations in physics, chemistry, and materials science. From a mechanical engineering perspective, we are interested in studying the role of defects in the mechanical properties in materials. In real materials, defects are typically found at very small concentrations e.g., vacancies occur at parts per million, dislocation density in metals ranges from $10^{10} m^{-2}$ to $10^{15} m^{-2}$, and grain sizes vary from nanometers to micrometers in polycrystalline materials, etc. In order to model materials at realistic defect concentrations using DFT, we would need to work with system sizes beyond millions of atoms. Due to the cubic-scaling computational cost with respect to the number of atoms in conventional DFT implementations, such system sizes are unreachable. Since the early 1990s, there has been a huge interest in developing DFT implementations that have linear-scaling computational cost. A promising approach to achieving linear-scaling cost is to approximate the density matrix in KSDFT. The focus of this thesis is to provide a firm mathematical framework to study the convergence of these approximations. We reformulate the Kohn-Sham density functional theory as a nested variational problem in the density matrix, the electrostatic potential, and a field dual to the electron density. The corresponding functional is linear in the density matrix and thus amenable to spectral representation. Based on this reformulation, we introduce a new approximation scheme, called spectral binning, which does not require smoothing of the occupancy function and thus applies at arbitrarily low temperatures. We proof convergence of the approximate solutions with respect to spectral binning and with respect to an additional spatial discretization of the domain. For a standard one-dimensional benchmark problem, we present numerical experiments for which spectral binning exhibits excellent convergence characteristics and outperforms other linear-scaling methods.
Resumo:
I. Crossing transformations constitute a group of permutations under which the scattering amplitude is invariant. Using Mandelstem's analyticity, we decompose the amplitude into irreducible representations of this group. The usual quantum numbers, such as isospin or SU(3), are "crossing-invariant". Thus no higher symmetry is generated by crossing itself. However, elimination of certain quantum numbers in intermediate states is not crossing-invariant, and higher symmetries have to be introduced to make it possible. The current literature on exchange degeneracy is a manifestation of this statement. To exemplify application of our analysis, we show how, starting with SU(3) invariance, one can use crossing and the absence of exotic channels to derive the quark-model picture of the tensor nonet. No detailed dynamical input is used.
II. A dispersion relation calculation of the real parts of forward π±p and K±p scattering amplitudes is carried out under the assumption of constant total cross sections in the Serpukhov energy range. Comparison with existing experimental results as well as predictions for future high energy experiments are presented and discussed. Electromagnetic effects are found to be too small to account for the expected difference between the π-p and π+p total cross sections at higher energies.
Resumo:
Since the discovery of the Higgs boson at the LHC, its use as a probe to search for beyond the standard model physics, such as supersymmetry, has become important, as seen in a recent search by the CMS experiment using razor variables in the diphoton final state. Motivated by this search, this thesis examines the LHC discovery potential of a SUSY scenario involving bottom squark pair production with a Higgs boson in the final state. We design and implement a software-based trigger using the razor variables for the CMS experiment to record events with a bottom quark-antiquark pair from a Higgs boson. We characterize the full range of signatures at the LHC from this Higgs-aware SUSY scenario and demonstrate the sensitivity of the CMS data to this model.
Resumo:
The experimental portion of this thesis tries to estimate the density of the power spectrum of very low frequency semiconductor noise, from 10-6.3 cps to 1. cps with a greater accuracy than that achieved in previous similar attempts: it is concluded that the spectrum is 1/fα with α approximately 1.3 over most of the frequency range, but appearing to have a value of about 1 in the lowest decade. The noise sources are, among others, the first stage circuits of a grounded input silicon epitaxial operational amplifier. This thesis also investigates a peculiar form of stationarity which seems to distinguish flicker noise from other semiconductor noise.
In order to decrease by an order of magnitude the pernicious effects of temperature drifts, semiconductor "aging", and possible mechanical failures associated with prolonged periods of data taking, 10 independent noise sources were time-multiplexed and their spectral estimates were subsequently averaged. If the sources have similar spectra, it is demonstrated that this reduces the necessary data-taking time by a factor of 10 for a given accuracy.
In view of the measured high temperature sensitivity of the noise sources, it was necessary to combine the passive attenuation of a special-material container with active control. The noise sources were placed in a copper-epoxy container of high heat capacity and medium heat conductivity, and that container was immersed in a temperature controlled circulating ethylene-glycol bath.
Other spectra of interest, estimated from data taken concurrently with the semiconductor noise data were the spectra of the bath's controlled temperature, the semiconductor surface temperature, and the power supply voltage amplitude fluctuations. A brief description of the equipment constructed to obtain the aforementioned data is included.
The analytical portion of this work is concerned with the following questions: what is the best final spectral density estimate given 10 statistically independent ones of varying quality and magnitude? How can the Blackman and Tukey algorithm which is used for spectral estimation in this work be improved upon? How can non-equidistant sampling reduce data processing cost? Should one try to remove common trands shared by supposedly statistically independent noise sources and, if so, what are the mathematical difficulties involved? What is a physically plausible mathematical model that can account for flicker noise and what are the mathematical implications on its statistical properties? Finally, the variance of the spectral estimate obtained through the Blackman/Tukey algorithm is analyzed in greater detail; the variance is shown to diverge for α ≥ 1 in an assumed power spectrum of k/|f|α, unless the assumed spectrum is "truncated".
Resumo:
Constitutive modeling in granular materials has historically been based on macroscopic experimental observations that, while being usually effective at predicting the bulk behavior of these type of materials, suffer important limitations when it comes to understanding the physics behind grain-to-grain interactions that induce the material to macroscopically behave in a given way when subjected to certain boundary conditions.
The advent of the discrete element method (DEM) in the late 1970s helped scientists and engineers to gain a deeper insight into some of the most fundamental mechanisms furnishing the grain scale. However, one of the most critical limitations of classical DEM schemes has been their inability to account for complex grain morphologies. Instead, simplified geometries such as discs, spheres, and polyhedra have typically been used. Fortunately, in the last fifteen years, there has been an increasing development of new computational as well as experimental techniques, such as non-uniform rational basis splines (NURBS) and 3D X-ray Computed Tomography (3DXRCT), which are contributing to create new tools that enable the inclusion of complex grain morphologies into DEM schemes.
Yet, as the scientific community is still developing these new tools, there is still a gap in thoroughly understanding the physical relations connecting grain and continuum scales as well as in the development of discrete techniques that can predict the emergent behavior of granular materials without resorting to phenomenology, but rather can directly unravel the micro-mechanical origin of macroscopic behavior.
In order to contribute towards closing the aforementioned gap, we have developed a micro-mechanical analysis of macroscopic peak strength, critical state, and residual strength in two-dimensional non-cohesive granular media, where typical continuum constitutive quantities such as frictional strength and dilation angle are explicitly related to their corresponding grain-scale counterparts (e.g., inter-particle contact forces, fabric, particle displacements, and velocities), providing an across-the-scale basis for better understanding and modeling granular media.
In the same way, we utilize a new DEM scheme (LS-DEM) that takes advantage of a mathematical technique called level set (LS) to enable the inclusion of real grain shapes into a classical discrete element method. After calibrating LS-DEM with respect to real experimental results, we exploit part of its potential to study the dependency of critical state (CS) parameters such as the critical state line (CSL) slope, CSL intercept, and CS friction angle on the grain's morphology, i.e., sphericity, roundness, and regularity.
Finally, we introduce a first computational algorithm to ``clone'' the grain morphologies of a sample of real digital grains. This cloning algorithm allows us to generate an arbitrary number of cloned grains that satisfy the same morphological features (e.g., roundness and aspect ratio) displayed by their real parents and can be included into a DEM simulation of a given mechanical phenomenon. In turn, this will help with the development of discrete techniques that can directly predict the engineering scale behavior of granular media without resorting to phenomenology.