998 resultados para Li niobate thin films
Resumo:
Epitaxial LaNiO3 metallic oxide thin films have been grown on c-axis oriented YBa2Cu3O7-delta thin films on LaAlO3 substrates by pulsed laser deposition technique and the interface formed between the two films has been examined by measuring the contact conductance of the same. The specific contact conductance of the interface measured using a modified four probe method was found to be 1.4 to 6 x 10(4) ohm(-1) cm(-2) at 77 K, There are indications that contact conductance can be brought closer to that obtained for noble metal-YBCO interface.
Resumo:
The surfaces of laser ablated thin films of YBa2Cu3O7?? have been passivated with about 100 Å thick textured layer of Ca0.95Sr0.025Ba0.025Zr0.98Ta0.01Ti0.01O3. It is shown that this low loss dielectric material preserves the quality of the surface and also prolongs the aging process. The films (both passivated and as?deposited) have been studied for degradation on exposure to atmosphere and also on dipping directly in water. The technique of nonresonant microwave absorption is used to study the effects and extent of degradation in these films. © 1995 American Institute of Physics.
Resumo:
We report a dramatic change in effective three-photon absorption coefficient of amorphous Ge16As29Se55 thin films, when its optical band gap decreases by 10 meV with 532 nm light illumination. This large change provides valuable information on the higher excited states, which are otherwise inaccessible via normal optical absorption. The results also indicate that photodarkening in chalcogenide glasses can serve as an effective tool to tune the multiphoton absorption in a rather simple way. (C) 2011 American Institute of Physics.
Resumo:
The understanding and control of anisotropy in Fe films grown on cubic systems such as GaAs and MgO has been of interest from the point of view of applications in devices. We report magnetic anisotropy studies on Fe/GaAs(001) and Fe/MgO/GaAs(001) prepared by pulsed laser deposition. In Fe/GaAs(001), magneto optical Kerr effect (MOKE) measurements revealed a dominant uniaxial anisotropy for Fe thickness less than 20 monolayers (ML) and this was confirmed by ferromagnetic resonance (FMR) studies. Multiple steps in the hysteresis loops were observed for Fe films of thickness 20 and 25 ML. Whereas, in Fe/MgO/GaAs(001), even at 25 ML of Fe, the uniaxial anisotropy remained dominant. The anisotropy constants obtained from FMR spectra have shown that the relative strength of uniaxial anisotropy is higher as compared to the cubic anisotropy constant in the case of Fe/MgO/GaAs(001). (C) 2011 American Institute of Physics. doi:10.1063/1.3556941]
Resumo:
Thin films of barium strontium titanate (BST) including BaTiO3 and SrTiO3 end members were deposited using the metallo-organic decomposition (MOD) technique. Processing parameters such as nonstoichiometry, annealing temperature and time, film thickness and doping concentration were correlated with the structural and electrical properties of the films. A random polycrystalline structure was observed for all MOD films under the processing conditions in this study. The microstructures of the films showed multi-grains structure through the film thickness. A dielectric constant of 563 was observed for (Ba0.7Sr0.3)TiO3 films rapid thermal annealed at 750 degrees C for 60 s. The dielectric constant increased with annealing temperature and film thickness, while the dielectric constant could reach the bulk values for thicknesses as thin as similar to 0.3 mu m. Nonstoichiometry and doping in the films resulted in a lowering of the dielectric constant. For near-stoichiometric films, a small dielectric dispersion obeying the Curie-von Schweidler type dielectric response was observed. This behavior may be attributed to the presence of the high density of disordered grain boundaries. All MOD processed films showed trap-distributed space-charge limited conduction (SCLC) behavior with slope of similar to 7.5-10 regardless of the chemistry and processing parameter due to the presence of main boundaries through the film thickness. The grain boundaries masked the effect of donor-doping, so that all films showed distributed-trap SCLC behavior without discrete-traps. Donor-doping could significantly improve the time-dependent dielectric breakdown behavior of BST thin films, mostly likely due to the lower oxygen vacancy concentration resulted from donor-doping. From the results of charge storage density, leakage current and time-dependent dielectric breakdown behavior, BST thin films are found to be promising candidates for 64 and 256Mb ULSI DRAM applications. (C) 1997 Elsevier Science S.A.
Resumo:
Lead Zirconate (PbZrO3) thin films were deposited by pulsed laser ablation method. Pseudocubic (110) oriented in-situ films were grown at low pressure. The field enforced anti-ferroelectric (AFE) to ferroelectric (FE) phase transformation behaviour was investigated by means of a modified Sawyer Tower circuit as well as capacitance versus applied voltage measurements. The maximum polarisation obtained was 36 mu C cm(-2) and the critical field to induce ferroelectric state and to reverse the antiferroelectric slates were 65 and 90 kV cm(-1) respectively. The dielectric properties were investigated as a function of frequency and temperature. The dielectric constant of the AFE lead zirconate thin him was 190 at 100 kHz which is more than the bulk ceramic value (120) with a dissipation factor of less than 0.07. The polarisation switching kinetics of the antiferroelectric PbZrO3 thin films showed that the switching time to be around 275 ns between antipolar state to polar states. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The kinetics of the processes in facing targets sputtering of multicomponent oxide films is presented. The novel configuration of the process exhibits an enhanced ionization efficiency. Discharge diagnostics performed using optical emission spectroscopy revealed strong dependence of plasma parameters on process conditions. Numerical simulation based on thermalization and diffusion of sputtered atoms has been performed to estimate the transport efficiency in off-axis mode. Composition, structure and epitaxial quality of YBa2Cu3O7-x films prepared was found to be strongly dependent on atomic flux ratios (of Cu/Y and Ba/Y) arriving at the substrate, resputtering effect and phase stability of YBa2Cu3O7-x These studies have been shown to be useful in understanding the complex processes that occur in sputtering of multicomponent films. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
The laser ablated barium strontium titanate (BST) thin films were characterized in terms of composition, structure, microstructure and electrical properties. Films deposited at 300 degrees C under 50 mTorr oxygen pressure and 3 J cm(-2) laser fluence and further annealed at 600 degrees C in flowing oxygen showed a dielectric constant of 467 and a dissipation factor of 0.02. The room-temperature current-voltage characteristics revealed a space charge limited conduction (SCLC) mechanism, though at low fields the effect of the electrodes was predominant. The conduction mechanism was thoroughly-investigated in terms of Schottky emission at low fields, and bulk-limited SCLC at high fields. The change over to the bulk-limited conduction process from the electrode-limited Schottky emission was, attributed to the process of tunneling through the electrode interface at high fields resulting into the lowering of the electrode contact resistance and consequently giving rise to a bulk limited conduction process. The predominance of SCLC mechanism in the films suggests that the bulk properties are only revealed if the depletion width at the electrode interface is thin enough to allow the tunneling process to take place. This condition is only favorable if the him thickness is high or if the doping concentration is high enough. In the present case the film thickness ranged from 0.3 to 0.7 mu m which was suitable to show the transition mentioned above. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
In recent times antiferroelectric thin-film material compositions have been identified as one of the most significant thin films for development of devices such as high charge storage, charge couplers/decouplers, and high strain microelectromechanical systems. Thus, understanding the dielectric and electrical properties under an ac signal drive in these antiferroelectric thin-film compositions, such as lead zirconate thin films, and the effect of donor doping on them is very necessary. For this purpose, thin films of antiferroelectric lead zirconate and La-modified lead zirconate thin films with mole % concentrations of 0, 3, 5, and 9 have been deposited by pulsed excimer laser ablation. The dielectric and hysteresis properties have confirmed that with a gradual increase of the La content, the room-temperature antiferroelectric lead zirconate thin films can be modified into ferroelectric and paraelectric phases. ac electrical studies revealed that the polaronic related hopping conduction is responsible for the charge transport phenomenon in these films. With a La content of less than or equal to3 mole % in pure lead zirconate, the conductivity of the films has been reduced and followed by an increase of its conductivity for a greater than or equal to3% addition of La to lead zirconate thin films. The polaronic activation energies are also found to follow a similar trend as that of the conductivity.
Resumo:
Lanthanum doped lead titanate (PLT) thin films were identified as the most potential candidates for the pyroelectric and memory applications. PLT thin films were deposited on Pt coated Si by excimer laser ablation technique. The polarization behavior of PLT thin films has been studied over a temperature range of 300 K to 550 K. A universal power law relation was brought into picture to explain the frequency dependence of ac conductivity. At higher frequency region ac conductivity of PLT thin films become temperature independent. The temperature dependence of ac conductivity and the relaxation time is analyzed in detail. The activation energy obtained from the ac conductivity was attributed to the shallow trap controlled space charge conduction in the bulk of the sample. The impedance analysis for PLT thin films were also performed to get insight of the microscopic parameters, like grain, grain boundary, and film-electrode interface etc. The imaginary component of impedance Z" exhibited different peak maxima at different temperatures. Different types of mechanisms were analyzed in detail to explain the dielectric relaxation behavior in the PLT thin films.
Electrical characterization of Ba(Zr0.1Ti0.9)O-3 thin films grown by pulsed laser ablation technique
Resumo:
In situ annealed thin films of ferroelectric Ba(Zr0.1Ti0.9)O-3 were deposited on platinum substrates by pulsed laser ablation technique. The as grown films were polycrystalline in nature without the evidence of any secondary phases. The polarization hysteresis loop confirmed the ferroelectricity, which was also cross-checked with the capacitance-voltage characteristics. The remnant polarization was about 5.9 muC cm(-2) at room temperature and the coercive field was 45 kV. There was a slight asymmetry in the hysteresis for different polarities, which was thought to be due to the work function differences of different electrodes. The dielectric constant was about 452 and was found to exhibit low frequency dispersion that increased with frequency, This was related to the space-charge polarization. The complex impedance was plotted and this exhibited a semicircular trace, and indicated an equivalent parallel R - C circuit within the sample. This was attributed to the grain response. The DC leakage current-voltage plot was consistent with the space-charge limited conduction theory, but showed some deviation, which was explained by assuming a Poole-Frenkel type conduction to be superimposed on to the usual space-charge controlled current. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The reversible and irreversible components of the total polarization in a thin film of SrBi2(Ta-0.5,Nb-0.5)(2)O-9 were calculated. The C-V loop was integrated to obtain the reversible part of the total polarization. The reversible polarization was only 20% of the total polarization and showed almost no hysteresis. However, the dielectric constant due to the total polarization was almost the same as that for the reversible polarization in the saturation region of the large signal P-E hysteresis loop. The reversible part was subtracted from the total polarization to calculate the irreversible counterpart of it. The irreversible polarization showed a near-square shaped hysteresis loop, while the reversible polarization was obeying the Rayleigh law. The small signal hysteresis was simulated from the parameters obtained from the Rayleigh-curve fit with the experimental curve and then it was compared with the result obtained from direct measurement with small amplitude. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
We have investigated the microstructure of thin films grown by metal-organic chemical vapour deposition using a beta-diketonate complex of cobalt, namely cobalt (11) acetylacetonate. Films were deposited on three different substrates: Si(100), thermally oxidised silicon [SiO2/Si(100)] and glass at the same time. As-grown films were characterised by X-ray diffraction, scanning electron microscopy, scanning tunnelling microscopy, atomic force microscopy and secondary ion mass spectrometry. Electrical resistivity was measured for all the films as a function of temperature. We found that films have very fine grains, resulting in high electrical resistivity Further, film microstructure has a strong dependence on the nature of the substrate and there is diffusion of silicon and oxygen into cobalt from the substrate. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Thin films of the semiconducting, monoclinic vanadium dioxide, VO2(M) have been prepared on ordinary glass by two methods: directly by low-pressure metalorganic chemical vapor deposition (MOCVD), and by argon-annealing films of the VO2(B) phase deposited by MOCVD. The composition and microstructure of the films have been examined by x-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Films made predominantly of either the B or the M phase, as deposited, can only be obtained over a narrow range of deposition temperatures. At the lower end of this temperature range, the as-deposited films are strongly oriented, although the substrate is glass. This can be understood from the drive to minimize surface energy. Films of the B phase have a platelet morphology, which leads to an unusual microstructure at the lower-deposition temperatures. Those grown at similar to370 degreesC convert to the metallic, rutile (R) phase when annealed at 550 degreesC, whereas those deposited at 420 degreesC transform to the R phase only at 580 degreesC. (When cooled to room temperature, the annealed films convert reversibly from the R phase to the M phase.) Electron microscopy shows that annealing leads to disintegration of the single crystalline VO2(B) platelets into small crystallites of VO2(R), although the platelet morphology is retained. When the annealing temperature is relatively low, these crystallites are nanometer sized. At a higher-annealing temperature, the transformation leads to well-connected and similarly oriented large grains of VO2(R), enveloped in the original platelet. The semiconductor-metal transition near 68 degreesC leads to a large jump in resistivity in all the VO2(M) films, nearly as large as in epitaxial films on single-crystal substrates. When the annealed films contain well-connected large grains, the transition is very sharp. Even when preferred orientation is present, the transition is not as sharp in as-deposited VO2(M), because the crystallites are not densely packed as in annealed VO2(B). However, the high degree of orientation in these films leads to a narrow temperature hysteresis. (C) 2002 American Institute of Physics.
Resumo:
The mechanism of field induced phase switching in antiferroelectric lead zirconate and La-modified lead zirconate thin films has been analysed in terms of reversible and irreversible switching process under weak fields as a function of donor concentration. Extension of Rayleigh law of ferromagnetic materials to the present antiferroelectric and modified antiferroelectric compositions have clearly showed that origin of small signal dielectric permittivity is due to reversible domain wall motion. Rayleigh's constant, a measure of irreversible switching process, exhibited a slight increase with lower La3+ concentrations and followed by a gradual fall for higher concentration. This clearly illustrates that donor addition to antiferroelectric thin films controls the domain switching even under weak fields. (C) 2002 Elsevier Science B.V. All rights reserved.