839 resultados para Learning. Mathematics. Quadratic Functions. GeoGebra
Resumo:
The main objective of this ex post facto study is to compare the differencesin cognitive functions and their relation to schizotypal personality traits between agroup of unaffected parents of schizophrenic patients and a control group. A total of 52unaffected biological parents of schizophrenic patients and 52 unaffected parents ofunaffected subjects were assessed in measures of attention (Continuous PerformanceTest- Identical Pairs Version, CPT-IP), memory and verbal learning (California VerbalLearning Test, CVLT) as well as schizotypal personality traits (Oxford-Liverpool Inventoryof Feelings and Experiences, O-LIFE). The parents of the patients with schizophreniadiffer from the parents of the control group in omission errors on the ContinuousPerformance Test- Identical Pairs, on a measure of recall and on two contrast measuresof the California Verbal Learning Test. The associations between neuropsychologicalvariables and schizotpyal traits are of a low magnitude. There is no defined pattern ofthe relationship between cognitive measures and schizotypal traits
Resumo:
We propose and validate a multivariate classification algorithm for characterizing changes in human intracranial electroencephalographic data (iEEG) after learning motor sequences. The algorithm is based on a Hidden Markov Model (HMM) that captures spatio-temporal properties of the iEEG at the level of single trials. Continuous intracranial iEEG was acquired during two sessions (one before and one after a night of sleep) in two patients with depth electrodes implanted in several brain areas. They performed a visuomotor sequence (serial reaction time task, SRTT) using the fingers of their non-dominant hand. Our results show that the decoding algorithm correctly classified single iEEG trials from the trained sequence as belonging to either the initial training phase (day 1, before sleep) or a later consolidated phase (day 2, after sleep), whereas it failed to do so for trials belonging to a control condition (pseudo-random sequence). Accurate single-trial classification was achieved by taking advantage of the distributed pattern of neural activity. However, across all the contacts the hippocampus contributed most significantly to the classification accuracy for both patients, and one fronto-striatal contact for one patient. Together, these human intracranial findings demonstrate that a multivariate decoding approach can detect learning-related changes at the level of single-trial iEEG. Because it allows an unbiased identification of brain sites contributing to a behavioral effect (or experimental condition) at the level of single subject, this approach could be usefully applied to assess the neural correlates of other complex cognitive functions in patients implanted with multiple electrodes.
Resumo:
We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.
Resumo:
Inbreeding adversely affects life history traits as well as various other fitness-related traits, but its effect on cognitive traits remains largely unexplored, despite their importance to fitness of many animals under natural conditions. We studied the effects of inbreeding on aversive learning (avoidance of an odour previously associated with mechanical shock) in multiple inbred lines of Drosophila melanogaster derived from a natural population through up to 12 generations of sib mating. Whereas the strongly inbred lines after 12 generations of inbreeding (0.75<F<0.93) consistently showed reduced egg-to-adult viability (on average by 28%), the reduction in learning performance varied among assays (average=18% reduction), being most pronounced for intermediate conditioning intensity. Furthermore, moderately inbred lines (F=0.38) showed no detectable decline in learning performance, but still had reduced egg-to-adult viability, which indicates that overall inbreeding effects on learning are mild. Learning performance varied among strongly inbred lines, indicating the presence of segregating variance for learning in the base population. However, the learning performance of some inbred lines matched that of outbred flies, supporting the dominance rather than the overdominance model of inbreeding depression for this trait. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts a trade-off observed in previous selection experiments and suggests that much of the genetic variation for learning is owing to pleiotropic effects of genes affecting functions related to survival. These results suggest that genetic variation that affects learning specifically (rather than pleiotropically through general physiological condition) is either low or mostly due to alleles with additive (semi-dominant) effects.
Resumo:
Learning is the ability of an organism to adapt to the changes of its environment in response to its past experience. It is a widespread ability in the animal kingdom, but its evolutionary aspects are poorly known. Learning ability is supposedly advantageous under some conditions, when environmental conditions are not too stable - because in this case there is no need to learn to predict any event in the environment - and not changing too fast - otherwise environmental cues cannot be used because they are not reliable. Nevertheless, learning ability is also known to be costly in terms of energy needed for neuronal synthesis, memory formation, initial mistakes. During my PhD, I focused on the study of genetic variability of learning ability in natural populations. Genetic variability is the basis on which natural selection and genetic drift can act. How does learning ability vary in nature? What are the roles of additive genetic variation or maternal effects in this variation? Is it involved in evolutionary trade-offs with other fitness-related traits?¦I investigated a natural population of fruit fly, Drosophila melanogaster, as a model organism. Its learning ability is easy to measure with associative memory tests. I used two research tools: multiple inbred and isofemale lines derived from a natural population as a representative sample. My work was divided into three parts.¦First, I investigated the effects of inbreeding on aversive learning (avoidance of an odor previously associated with mechanical shock). While the inbred lines consistently showed reduced egg-to-adult viability by 28 %, the effects of inbreeding on learning performance was 18 % and varied among assays, with a trend to be most pronounced for intermediate conditioning intensity. Variation among inbred lines indicates that ample genetic variance for learning was segregating in the base population, and suggests that the inbreeding depression observed in learning performance was mostly due to dominance rather than overdominance. Across the inbred lines, learning performance was positively correlated with the egg-to-adult viability. This positive genetic correlation contradicts previous studies which observed a trade-off between learning ability and lifespan or larval competitive ability. It suggests that much of the genetic variation for learning is due to pleiotropic effects of genes affecting other functions related to survival. Together with the overall mild effects of inbreeding on learning performance, this suggests that genetic variation specifically affecting learning is either very low, or is due to alleles with mostly additive (semi-dominant) effects. It also suggests that alleles reducing learning performance are on average partially recessive, because their effect does not appear in the outbred base population. Moreover, overdominance seems unlikely as major cause of the inbreeding depression, because even if the overall mean of the inbred line is smaller than the outbred base population, some of the inbred lines show the same learning score as the outbred base population. If overdominance played an important part in inbreeding depression, then all the homozygous lines should show lower learning ability than¦outbred base population.¦In the second part of my project, I sampled the same natural population again and derived isofemale lines (F=0.25) which are less adapted to laboratory conditions and therefore are more representative of the variance of the natural population. They also showed some genetic variability for learning, and for three other fitness-related traits possibly related with learning: resistance to bacterial infection, egg-to-adult viability and developmental time. Nevertheless, the genetic variance of learning ability did not appear to be smaller than the variance of the other traits. The positive correlation previously observed between learning ability and egg- to-adult viability did not appear in isofemale lines (nor a negative correlation). It suggests that there was still genetic variability within isofemale lines and that they did not fix the highly deleterious pleiotropic alleles possibly responsible for the previous correlation.¦In order to investigate the relative amount of nuclear (additive and non-additive effects) and extra-nuclear (maternal and paternal effect) components of variance in learning ability and other fitness-related traits among the inbred lines tested in part one, I performed a diallel cross between them. The nuclear additive genetic variance was higher than other components for learning ability and survival to learning ability, but in contrast, maternal effects were more variable than other effects for developmental traits. This suggests that maternal effects, which reflects effects from mitochondrial DNA, epigenetic effects, or the amount of nutrients that are invested by the mother in the egg, are more important in the early stage of life, and less at the adult stage. There was no additive genetic correlation between learning ability and other traits, indicating that the correlation between learning ability and egg-to-adult viability observed in the first pat of my project was mostly due to recessive genes.¦Finally, my results showed that learning ability is genetically variable. The diallel experiment showed additive genetic variance was the most important component of the total variance. Moreover, every inbred or isofemale line showed some learning ability. This suggested that alleles impairing learning ability are eliminated by selection, and therefore that learning ability is under strong selection in natural populations of Drosophila. My results cannot alone explain the maintenance of the observed genetic variation. Even if I cannot eliminate the hypothesis of pleiotropy between learning ability and the other fitness-related traits I measured, there is no evidence for any trade-off between these traits and learning ability. This contradicts what has been observed between learning ability and other traits like lifespan and larval competitivity.¦L'apprentissage représente la capacité d'un organisme à s'adapter aux changement de son environnement au cours de sa vie, en réponse à son expérience passée. C'est une capacité très répandue dans le règne animal, y compris pour les animaux les plus petits et les plus simples, mais les aspects évolutifs de l'apprentissage sont encore mal connus. L'apprentissage est supposé avantageux dans certaines conditions, quand l'environnement n'est ni trop stable - dans ce cas, il n'y a rien à apprendre - ni trop variable - dans ce cas, les indices sur lesquels se reposer changent trop vite pour apprendre. D'un autre côté, l'apprentissage a aussi des coûts, en terme de synthèse neuronale, pour la formation de la mémoire, ou de coûts d'erreur initiale d'apprentissage. Pendant ma thèse, j'ai étudié la variabilité génétique naturelle des capacités d'apprentissage. Comment varient les capacités d'apprentissage dans la nature ? Quelle est la part de variation additive, l'impact des effets maternel ? Est-ce que l'apprentissage est impliqué dans des interactions, de type compromis évolutifs, avec d'autres traits liés à la fitness ?¦Afin de répondre à ces questions, je me suis intéressée à la mouche du vinaigre, ou drosophile, un organisme modèle. Ses capacités d'apprentissage sont facile à étudier avec un test de mémoire reposant sur l'association entre un choc mécanique et une odeur. Pour étudier ses capacités naturelles, j'ai dérivé de types de lignées d'une population naturelle: des lignées consanguines et des lignées isofemelles.¦Dans une première partie, je me suis intéressée aux effets de la consanguinité sur les capacités d'apprentissage, qui sont peu connues. Alors que les lignées consanguines ont montré une réduction de 28% de leur viabilité (proportion d'adultes émergeants d'un nombre d'oeufs donnés), leurs capacités d'apprentissage n'ont été réduites que de 18%, la plus forte diminution étant obtenue pour un conditionnement modéré. En outre, j'ai également observé que les capacités d'apprentissage était positivement corrélée à la viabilité entre les lignées. Cette corrélation est surprenante car elle est en contradiction avec les résultats obtenus par d'autres études, qui montrent l'existence de compromis évolutifs entre les capacités d'apprentissage et d'autres traits comme le vieillissement ou la compétitivité larvaire. Elle suggère que la variation génétique des capacités d'apprentissage est due aux effets pleiotropes de gènes récessifs affectant d'autres fonctions liées à la survie. Ces résultats indiquent que la variation pour les capacités d'apprentissage est réduite comparée à celle d'autres traits ou est due à des allèles principalement récessifs. L'hypothèse de superdominance semble peu vraisemblable, car certaines des lignées consanguines ont obtenu des scores d'apprentissage égaux à ceux de la population non consanguine, alors qu'en cas de superdominance, elles auraient toutes dû obtenir des scores inférieurs.¦Dans la deuxième partie de mon projet, j'ai mesuré les capacités d'apprentissage de lignées isofemelles issues de la même population initiale que les lignées consanguines. Ces lignées sont issues chacune d'un seul couple, ce qui leur donne un taux d'hétérozygosité supérieur et évite l'élimination de lignées par fixation d'allèles délétères rares. Elles sont ainsi plus représentatives de la variabilité naturelle. Leur variabilité génétique est significative pour les capacités d'apprentissage, et trois traits liés à la fois à la fitness et à l'apprentissage: la viabilité, la résistance à l'infection bactérienne et la vitesse de développement. Cependant, la variabilité des capacités d'apprentissage n'apparaît cette fois pas inférieure à celle des autres traits et aucune corrélation n'est constatée entre les capacité d'apprentissage et les autres traits. Ceci suggère que la corrélation observée auparavant était surtout due à la fixation d'allèles récessifs délétères également responsables de la dépression de consanguinité.¦Durant la troisième partie de mon projet, je me suis penchée sur la décomposition de la variance observée entre les lignées consanguines observée en partie 1. Quatre composants ont été examinés: la variance due à des effets nucléaires (additifs et non additifs), et due à des effets parentaux (maternels et paternels). J'ai réalisé un croisement diallèle de toutes les lignées. La variance additive nucléaire s'est révélée supérieure aux autres composants pour les capacités d'apprentissage et la résistance à l'infection bactérienne. Par contre, les effets maternels étaient plus importants que les autres composants pour les traits développementaux (viabilité et vitesse de développement). Ceci suggère que les effets maternels, dus à G ADN mitochondrial, à l'épistasie ou à la quantité de nutriments investis dans l'oeuf par la mère, sont plus importants dans les premiers stades de développement et que leur effet s'estompe à l'âge adulte. Il n'y a en revanche pas de corrélation statistiquement significative entre les effets additifs des capacités d'apprentissage et des autres traits, ce qui indique encore une fois que la corrélation observée entre les capacités d'apprentissage et la viabilité dans la première partie du projet était due à des effets d'allèles partiellement récessifs.¦Au, final, mes résultats montrent bien l'existence d'une variabilité génétique pour les capacités d'apprentissage, et l'expérience du diallèle montre que la variance additive de cette capacité est importante, ce qui permet une réponse à la sélection naturelle. Toutes les lignées, consanguines ou isofemelles, ont obtenu des scores d'apprentissage supérieurs à zéro. Ceci suggère que les allèles supprimant les capacités d'apprentissage sont fortement contre-sélectionnés dans la nature Néanmoins, mes résultats ne peuvent pas expliquer le maintien de cette variabilité génétique par eux-même. Même si l'hypothèse de pléiotropie entre les capacités d'apprentissage et l'un des traits liés à la fitness que j'ai mesuré ne peut être éliminée, il n'y a aucune preuve d'un compromis évolutif pouvant contribuer au maintien de la variabilité.
Resumo:
We characterize the weighted Hardy inequalities for monotone functions in Rn +. In dimension n = 1, this recovers the standard theory of Bp weights. For n > 1, the result was previously only known for the case p = 1. In fact, our main theorem is proved in the more general setting of partly ordered measure spaces.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
This communication is part of a larger teaching innovation project financed by the University ofBarcelona, whose objective is to develop and evaluate transversal competences of the UB, learningability and responsibility. The competence is divided into several sub-competencies being the ability toanalyze and synthesis the most intensely worked in the first year. The work presented here part fromthe results obtained in phase 1 and 2 previously implemented in other subjects (Mathematics andHistory) in the first year of the degree of Business Administration Degree. In these subjects’ previousexperiences there were deficiencies in the acquisition of learning skills by the students. The work inthe subject of Mathematics facilitated that students become aware of the deficit. The work on thesubject of History insisted on developing readings schemes and with the practical exercises wassought to go deeply in the development of this competence.The third phase presented here is developed in the framework of the second year degree, in the WorldEconomy subject. The objective of this phase is the development and evaluation of the same crosscompetence of the previous phases, from a practice that includes both, quantitative analysis andcritical reflection. Specifically the practice focuses on the study of the dynamic relationship betweeneconomic growth and the dynamics in the distribution of wealth. The activity design as well as theselection of materials to make it, has been directed to address gaps in the ability to analyze andsynthesize detected in the subjects of the first year in the previous phases of the project.The realization of the practical case is considered adequate methodology to improve the acquisition ofcompetence of the students, then it is also proposed how to evaluate the acquisition of suchcompetence. The practice is evaluated based on a rubric developed in the framework of the projectobjectives. Thus at the end of phase 3 we can analyze the process that have followed the students,detect where they have had major difficulties and identify those aspects of teaching that can help toimprove the acquisition of skills by the students. The interest of this phase resides in the possibility tovalue whether tracing of learning through competences, organized in a collaborative way, is a goodtool to develop the acquisition of these skills and facilitate their evaluation.
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
Resumo:
Verkostoitunut kansainvälinen tuotekehitys on tärkeä osa menestystä nykypäivän muuttuvassa yritysmaailmassa. Toimintojen tehostamiseksi myös projektitoiminnot on sopeutettava kansainväliseen toimintaympäristöön. Kilpailukyvyn säilyttämiseksi projektitoimintoja on lisäksi jatkuvasti tehostettava. Yhtenäkeinona nähdään projektioppiminen, jota voidaan edistää monin eri tavoin. Tässätyössä keskitytään projektitiedonhallinnan kehittämisen tuomiin oppimismahdollisuuksiin. Kirjallisuudessa kerrotaan, että projektitiedon jakaminen ja sen hyödyntäminen seuraavissa projekteissa on eräs projektioppimisen edellytyksistä. Tämäon otettu keskeiseksi näkökulmaksi tässä tutkimuksessa. Lisäksi tutkimusalueen rajaamiseksi työ tarkastelee erityisesti projektioppimista kansainvälisten tuotekehitysprojektien välillä. Työn tavoitteena on esitellä keskeisiä projektioppimisen haasteita ja etsiä konkreettinen ratkaisu vastaamaan näihin haasteisiin. Tuotekehitystoiminnot ja kansainvälinen hajautettu projektiorganisaatio kohtaavat lisäksi erityisiä haasteita, kuten tiedon hajautuneisuus, projektihenkilöstön vaihtuvuus, tiedon luottamuksellisuus ja maantieteelliset haasteet (esim. aikavyöhykkeet ja toimipisteen sijainti). Nämä erityishaasteet on otettu huomioon ratkaisua etsittäessä. Haasteisiin päädyttiin vastaamaan tietotekniikkapohjaisella ratkaisulla, joka suunniteltiin erityisesti huomioiden esimerkkiorganisaation tarpeet ja haasteet. Työssä tarkastellaan suunnitellun ratkaisun vaikutusta projektioppimiseen ja kuinka se vastaa havaittuihin haasteisiin. Tuloksissa huomattiin, että projektioppimista tapahtui, vaikka oppimista oli vaikea suoranaisesti huomata tutkimusorganisaation jäsenten keskuudessa. Projektioppimista voidaan kuitenkin sanoa tapahtuvan, jos projektitieto on helposti koko projektiryhmän saatavilla ja se on hyvin järjesteltyä. Muun muassa nämä ehdot täyttyivät. Projektioppiminen nähdään yleisesti haastavana kehitysalueena esimerkkiorganisaatiossa. Suuri osa tietämyksestä on niin sanottua hiljaistatietoa, jota on hankala tai mahdoton saattaa kirjalliseen muotoon. Näin olleen tiedon siirtäminen jää suurelta osin henkilökohtaisen vuorovaikutuksen varaan. Siitä huolimatta projektioppimista on mahdollista kehittää erilaisin toimintamallein ja menetelmin. Kehitys vaatii kuitenkin resursseja, pitkäjänteisyyttä ja aikaa. Monet muutokset voivat vaatia myös organisaatiokulttuurin muutoksen ja vaikuttamista organisaation jäseniin. Motivaatio, positiiviset mielikuvat ja selkeät strategiset tavoitteet luovat vakaan pohjan projektioppimisen kehittämiselle.
Resumo:
Improvement of mathematical education and motivation of students in the mathematics" area is needed. What can be done? We introduce some ideas to generate the student"s interest for mathematics, because they often present difficulties in appreciating the relevance of mathematics and its role in the health sciences. We consider that a cornerstone in the strategy to attract the students" interest is linking the mathematics with real biomedical situations. We proceed in the following manner: We first present a real biomedical situation to produce interest and to generate curiosity. Second, we ask thought-provoking questions to students as: Which is the biomedical problem presented? Which is my knowledge on this situation? What could I do to solve this biomedical situation? Do I need some new mathematical concepts and procedures? Thereupon, the teacher explains the mathematical concepts necessary to solve the case presented, providing definitions, properties and tools for graphical display and/or mathematical calculations. In this learning methodology, ICTs were cornerstones for reaching the proposed competences. Furthermore, ICTs can also be used in the evaluative task in its two possible aspects: formative and for obtaining a qualification. Comments from students about this new mathematics teaching method indicate that the use of real biomedical case studies kept the lessons in mathematics interesting.
Resumo:
We investigate under which dynamical conditions the Julia set of a quadratic rational map is a Sierpiński curve.
Resumo:
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions. REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.
Resumo:
In this paper we study student interaction in English and Swedish courses at a Finnish university. We focus on language choices made in task-related activities in small group interaction. Our research interests arose from the change in the teaching curriculum, in which content and language courses were integrated at Tampere University of Technology in 2013. Using conversation analysis, we analysed groups of 4-5 students who worked collaboratively on a task via a video conference programme. The results show how language alternation has different functions in 1) situations where students orient to managing the task, e.g., in transitions into task, or where they orient to technical problems, and 2) situations where students accomplish the task. With the results, we aim to show how language alternation can provide interactional opportunities for language learning. The findings will be useful in designing tasks in the future.