Estimating learning models from experimental data


Autoria(s): Cabrales, Antonio; Garcia Fontes, Walter
Contribuinte(s)

Universitat Pompeu Fabra. Departament d'Economia i Empresa

Data(s)

15/09/2005

Resumo

We study the statistical properties of three estimation methods for a model of learning that is often fitted to experimental data: quadratic deviation measures without unobserved heterogeneity, and maximum likelihood withand without unobserved heterogeneity. After discussing identification issues, we show that the estimators are consistent and provide their asymptotic distribution. Using Monte Carlo simulations, we show that ignoring unobserved heterogeneity can lead to seriously biased estimations in samples which have the typical length of actual experiments. Better small sample properties areobtained if unobserved heterogeneity is introduced. That is, rather than estimating the parameters for each individual, the individual parameters are considered random variables, and the distribution of those random variables is estimated.

Identificador

http://hdl.handle.net/10230/996

Idioma(s)

eng

Direitos

L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons

info:eu-repo/semantics/openAccess

<a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a>

Palavras-Chave #Microeconomics #estimation methods #learning #unobserved heterogeneity #leex
Tipo

info:eu-repo/semantics/workingPaper