858 resultados para Industrial buildings -- Design and construction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shearing is the process where sheet metal is mechanically cut between two tools. Various shearing technologies are commonly used in the sheet metal industry, for example, in cut to length lines, slitting lines, end cropping etc. Shearing has speed and cost advantages over competing cutting methods like laser and plasma cutting, but involves large forces on the equipment and large strains in the sheet material. The constant development of sheet metals toward higher strength and formability leads to increased forces on the shearing equipment and tools. Shearing of new sheet materials imply new suitable shearing parameters. Investigations of the shearing parameters through live tests in the production are expensive and separate experiments are time consuming and requires specialized equipment. Studies involving a large number of parameters and coupled effects are therefore preferably performed by finite element based simulations. Accurate experimental data is still a prerequisite to validate such simulations. There is, however, a shortage of accurate experimental data to validate such simulations. In industrial shearing processes, measured forces are always larger than the actual forces acting on the sheet, due to friction losses. Shearing also generates a force that attempts to separate the two tools with changed shearing conditions through increased clearance between the tools as result. Tool clearance is also the most common shearing parameter to adjust, depending on material grade and sheet thickness, to moderate the required force and to control the final sheared edge geometry. In this work, an experimental procedure that provides a stable tool clearance together with accurate measurements of tool forces and tool displacements, was designed, built and evaluated. Important shearing parameters and demands on the experimental set-up were identified in a sensitivity analysis performed with finite element simulations under the assumption of plane strain. With respect to large tool clearance stability and accurate force measurements, a symmetric experiment with two simultaneous shears and internal balancing of forces attempting to separate the tools was constructed. Steel sheets of different strength levels were sheared using the above mentioned experimental set-up, with various tool clearances, sheet clamping and rake angles. Results showed that tool penetration before fracture decreased with increased material strength. When one side of the sheet was left unclamped and free to move, the required shearing force decreased but instead the force attempting to separate the two tools increased. Further, the maximum shearing force decreased and the rollover increased with increased tool clearance. Digital image correlation was applied to measure strains on the sheet surface. The obtained strain fields, together with a material model, were used to compute the stress state in the sheet. A comparison, up to crack initiation, of these experimental results with corresponding results from finite element simulations in three dimensions and at a plane strain approximation showed that effective strains on the surface are representative also for the bulk material. A simple model was successfully applied to calculate the tool forces in shearing with angled tools from forces measured with parallel tools. These results suggest that, with respect to tool forces, a plane strain approximation is valid also at angled tools, at least for small rake angles. In general terms, this study provide a stable symmetric experimental set-up with internal balancing of lateral forces, for accurate measurements of tool forces, tool displacements, and sheet deformations, to study the effects of important shearing parameters. The results give further insight to the strain and stress conditions at crack initiation during shearing, and can also be used to validate models of the shearing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is generally assumed that Le Corbusier’s urban planning made a break with the past, and that the public spaces designed by him had nothing to do with anything that existed before – a conviction fostered by both the innovative character of his proposals and by the proliferation in his manifestos of watchwords that mask any evocation of the past – words like civilisation machiniste, l’esprit nouveau, l’architecture de demain. However, in his writings, Le Corbusier often mentioned the powerful analogy that exists between the architecture of other times and the logic of modern production. Vers une architecture, for example, contains a mixture of photographs showing silos, cars, aeroplanes, ships (i.e. the fruits of 19th and 20th century civil architecture and mechanical engineering) alongside photographs of Greek and Roman buildings. While Le Corbusier, at the end of the 1920s, claimed “I have only one teacher: the past; only one education: the study of the past”, a series of sketches in the first volume of the Œuvre complète, done during his youth at the archaeological sites visited during his Grand Tour, shows that his interest in the past went far beyond a simple reference.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Building Information Modelling is changing the design and construction field ever since it entered the market. It took just some time to show its capabilities, it takes some time to be mastered before it could be used expressing all its best features. Since it was conceived to be adopted from the earliest stage of design to get the maximum from the decisional project, it still struggles to adapt to existing buildings. In fact, there is a branch of this methodology that is dedicated to what has been already made that is called Historic BIM or HBIM. This study aims to make clear what are BIM and HBIM, both from a theoretical point of view and in practice, applying from scratch the state of the art to a case study. It had been chosen the fortress of San Felice sul Panaro, a marvellous building with a thousand years of history in its bricks, that suffered violent earthquakes, but it is still standing. By means of this example, it will be shown which are the limits that could be encountered when applying BIM methodology to existing heritage, moreover will be pointed out all the new features that a simple 2D design could not achieve.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the development of calibration procedures and control systems to improve the performance and efficiency of modern spark ignition turbocharged engines. The algorithms developed are used to optimize and manage the spark advance and the air-to-fuel ratio to control the knock and the exhaust gas temperature at the turbine inlet. The described work falls within the activity that the research group started in the previous years with the industrial partner Ferrari S.p.a. . The first chapter deals with the development of a control-oriented engine simulator based on a neural network approach, with which the main combustion indexes can be simulated. The second chapter deals with the development of a procedure to calibrate offline the spark advance and the air-to-fuel ratio to run the engine under knock-limited conditions and with the maximum admissible exhaust gas temperature at the turbine inlet. This procedure is then converted into a model-based control system and validated with a Software in the Loop approach using the engine simulator developed in the first chapter. Finally, it is implemented in a rapid control prototyping hardware to manage the combustion in steady-state and transient operating conditions at the test bench. The third chapter deals with the study of an innovative and cheap sensor for the in-cylinder pressure measurement, which is a piezoelectric washer that can be installed between the spark plug and the engine head. The signal generated by this kind of sensor is studied, developing a specific algorithm to adjust the value of the knock index in real-time. Finally, with the engine simulator developed in the first chapter, it is demonstrated that the innovative sensor can be coupled with the control system described in the second chapter and that the performance obtained could be the same reachable with the standard in-cylinder pressure sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cable-driven parallel robots offer significant advantages in terms of workspace dimensions and payload capability. They are attractive for many industrial tasks to be performed on a large scale, such as handling and manufacturing, without a substantial increase in costs and mechanical complexity with respect to a small-scale application. However, since cables can only sustain tensile stresses, cable tensions must be kept within positive limits during the end-effector motion. This problem can be managed by overconstraining the end-effector and controlling cable tensions. Tension control is typically achieved by mounting a load sensor on all cables, and using specific control algorithms to avoid cable slackness or breakage while the end-effector is controlled in a desired position. These algorithms require multiple cascade control loops and they can be complex and computationally demanding. To simplify the control of overconstrained cable-driven parallel robots, this Thesis proposes suitable mechanical design and hybrid control strategies. It is shown how a convenient design of the cable guidance system allows kinematic modeling to be simplified, without introducing geometric approximations. This guidance system employs swiveling pulleys equipped with position and tension sensors and provides a parallelogram arrangement of cables. Furthermore, a hybrid force/position control in the robot joint space is adopted. According to this strategy, a particular set of cables is chosen to be tension-controlled, whereas the other cables are length-controlled. The force-controlled cables are selected based on the computation of a novel index called force-distribution sensitivity to cable-tension errors. This index aims to evaluate the maximum expected cable-tension error in the length-controlled cables if a unit tension error is committed in the force-controlled cables. In practice, the computation of the force-distribution sensitivity allows determining which cables are best to be force-controlled, to ensure the lowest error in the overall force distribution when a hybrid force/position joint-space strategy is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nowadays, technological advancements have brought industry and research towards the automation of various processes. Automation brings a reduction in costs and an improvement in product quality. For this reason, companies are pushing research to investigate new technologies. The agriculture industry has always looked towards automating various processes, from product processing to storage. In the last years, the automation of harvest and cultivation phases also has become attractive, pushed by the advancement of autonomous driving. Nevertheless, ADAS systems are not enough. Merging different technologies will be the solution to obtain total automation of agriculture processes. For example, sensors that estimate products' physical and chemical properties can be used to evaluate the maturation level of fruit. Therefore, the fusion of these technologies has a key role in industrial process automation. In this dissertation, ADAS systems and sensors for precision agriculture will be both treated. Several measurement procedures for characterizing commercial 3D LiDARs will be proposed and tested to cope with the growing need for comparison tools. Axial errors and transversal errors have been investigated. Moreover, a measurement method and setup for evaluating the fog effect on 3D LiDARs will be proposed. Each presented measurement procedure has been tested. The obtained results highlight the versatility and the goodness of the proposed approaches. Regarding the precision agriculture sensors, a measurement approach for the Moisture Content and density estimation of crop directly on the field is presented. The approach regards the employment of a Near Infrared spectrometer jointly with Partial Least Square statistical analysis. The approach and the model will be described together with a first laboratory prototype used to evaluate the NIRS approach. Finally, a prototype for on the field analysis is realized and tested. The test results are promising, evidencing that the proposed approach is suitable for Moisture Content and density estimation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of Power Electronics, several types of motor control systems have been developed using STM microcontroller and power boards. In both industrial power applications and domestic appliances, power electronic inverters are widely used. Inverters are used to control the torque, speed, and position of the rotor in AC motor drives. An inverter delivers constant-voltage and constant-frequency power in uninterruptible power sources. Because inverter power supplies have a high-power consumption and low transfer efficiency rate, a three-phase sine wave AC power supply was created using the embedded system STM32, which has low power consumption and efficient speed. It has the capacity of output frequency of 50 Hz and the RMS of line voltage. STM32 embedded based Inverter is a power supply that integrates, reduced, and optimized the power electronics application that require hardware system, software, and application solution, including power architecture, techniques, and tools, approaches capable of performance on devices and equipment. Power inverters are currently used and implemented in green energy power system with low energy system such as sensors or microcontroller to perform the operating function of motors and pumps. STM based power inverter is efficient, less cost and reliable. My thesis work was based on STM motor drives and control system which can be implemented in a gas analyser for operating the pumps and motors. It has been widely applied in various engineering sectors due to its ability to respond to adverse structural changes and improved structural reliability. The present research was designed to use STM Inverter board on low power MCU such as NUCLEO with some practical examples such as Blinking LED, and PWM. Then we have implemented a three phase Inverter model with Steval-IPM08B board, which converter single phase 230V AC input to three phase 380 V AC output, the output will be useful for operating the induction motor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Industrial companies, particularly those with induction motors and gearboxes as integral components of their systems, are utilizing Condition Monitoring (CM) systems more frequently in order to discover the need for maintenance in advance, as traditional maintenance only performs tasks when a failure has been identified. Utilizing a CM system is essential to boost productivity and minimize long-term failures that result in financial loss. The more exact and practical the CM system, the better the data analysis, which adds to a more precise maintenance forecast. This thesis project is a cooperation with PEI Vibration Monitoring s.r.l. to design and construct a low-cost vibrational condition monitoring system to check the health of induction motors and gearboxes automatically. Moreover, according to the company's request, such a system should have specs comparable to NI 9234, one of the company's standard Data Acquisition (DAQ) boards, but at a significantly cheaper price. Additionally, PEI VM Company has supplied all hardware and electronic components. The suggested CM system is capable of highprecision autonomous monitoring of induction motors and gearboxes, and it consists of a Raspberry Pi 3B and MCC 172 DAQ board.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: The MASS IV-DM Trial is a large project from a single institution, the Heart Institute (InCor), University of Sao Paulo Medical School, Brazil to study ventricular function and coronary arteries in patients with type 2 diabetes mellitus. Methods/Design: The study will enroll 600 patients with type 2 diabetes who have angiographically normal ventricular function and coronary arteries. The goal of the MASS IV-DM Trial is to achieve a long-term evaluation of the development of coronary atherosclerosis by using angiograms and coronary-artery calcium scan by electron-beam computed tomography at baseline and after 5 years of follow-up. In addition, the incidence of major cardiovascular events, the dysfunction of various organs involved in this disease, particularly microalbuminuria and renal function, will be analyzed through clinical evaluation. In addition, an effort will be made to investigate in depth the presence of major cardiovascular risk factors, especially the biochemical profile, metabolic syndrome inflammatory activity, oxidative stress, endothelial function, prothrombotic factors, and profibrinolytic and platelet activity. An evaluation will be made of the polymorphism as a determinant of disease and its possible role in the genesis of micro- and macrovascular damage. Discussion: The MASS IV-DM trial is designed to include diabetic patients with clinically suspected myocardial ischemia in whom conventional angiography shows angiographically normal coronary arteries. The result of extensive investigation including angiographic follow-up by several methods, vascular reactivity, pro-thrombotic mechanisms, genetic and biochemical studies may facilitate the understanding of so-called micro- and macrovascular disease of DM.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a theoretical model for superhydrophobic surfaces that are formed from an extended array of microcavities, and have fabricated specific microcavity patterns to form superhydrophobic surfaces of the kind modeled. The model shows that the cavity aspect ratio can be significantly less than unity, indicating that the microcavities do not need to be deep in order to enhance the superhydrophobic character of the surface. We have fabricated surfaces of this kind and measured advancing contact angle as high as 153 degrees, in agreement with predictions of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There are about 7500 water treatment plants in Brazil. The wastes these plants generate in their decantation tanks and filters are discharged directly into the same brooks and rivers that supply water for treatment. Another serious environmental problem is the unregulated disposal of construction and demolition rubble, which increases the expenditure of public resources by degrading the urban environment and contributing to aggravate flooding and the proliferation of vectors harmful to public health. In this study, an evaluation was made of the possibility of recycling water treatment sludge in construction and demolition waste recycling plants. The axial compressive strength and water absorption of concretes and mortars produced with the exclusive and joint addition of these two types of waste was also determined. The ecoefficiency of this recycling was evaluated by determining the concentration of aluminum in the leached extract resulting from the solubilization of the recycled products. The production of concretes and mortars with the joint addition of water treatment sludge and recycled concrete rubble aggregates proved to be a viable recycling alternative from the standpoint of axial compression strength, modulus of elasticity, water absorption and tensile strength by the Brazilian test method. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a novel graphical approach to adjust and evaluate frequency-based relays employed in anti-islanding protection schemes of distributed synchronous generators, in order to meet the anti-islanding and abnormal frequency variation requirements, simultaneously. The proposed method defines a region in the power mismatch space, inside which the relay non-detection zone should be located, if the above-mentioned requirements must be met. Such region is called power imbalance application region. Results show that this method can help protection engineers to adjust frequency-based relays to improve the anti-islanding capability and to minimize false operation occurrences, keeping the abnormal frequency variation utility requirements satisfied. Moreover, the proposed method can be employed to coordinate different types of frequency-based relays, aiming at improving overall performance of the distributed generator frequency protection scheme. (C) 2011 Elsevier B.V. All rights reserved.