866 resultados para Dried beef
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The growth hormone receptor (GHR) is the cell surface receptor for growth hormone (GH) and is required for GH to carry out its effects on target tissues. The objectives of the present study were to estimate the allele and genotype frequencies of the GHR/Alu I gene polymorphism located in the regulatory region in beef cattle belonging to different genetic groups and to determine associations between this polymorphism and growth and carcass traits. Genotyping was performed on 384 animals, including 79 Nellore (Zebu), 30 Canchim (5/8 Charolais+3/8 Zebu), 30 Simmental X Nellore crossbred and 245 Angus x Nellore crossbred cattle. Alleles Alu I(+), Alu I(-) and Alu I(N)-null allele-were evidenced for the GHR/Alu I polymorphism and the frequency of the Alu I(N) allele was significantly higher than the frequency of the Alu I(+) and Alu I(-) alleles in all genetic groups. Genotype Alu I(N/N) of the GHRIAlu I predominated in Nellore animals, while the Alu I(N/+) and Alu I(N/-) predominated in the other genetic groups. In the association studies, traits of interest were analyzed using the General Linear Model (GLM) procedure of the SAS program and least squares means of the genotypes were compared by the Tukey test. Significant associations (P < 0.05) were observed between the Alu I(N/N) genotype of the GHRIAlu I polymorphism and lower weight gain and body weight at slaughter, although a confounding between genotypes and genetic groups may have occurred. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Growth hormone (GH), insulin-like growth factors 1 and 2 (IGF1 and IGF2) and their associated binding proteins and transmembrane receptors (GHR, IGF1R and IGF2R) play an important role in the physiology of mammalian growth. The objectives of the present study were to estimate the allele and genotype frequencies of microsatellite markers located in the 5'-regulatory region of the IGF1 and GHR genes in beef cattle belonging to different genetic groups and to determine effects of these markers on growth and carcass traits in these animals under an intensive production system. For this purpose, genotyping was performed on 384 bulls including 79 Nellore, 30 Canchim (5/8 Charolais + 3/8 Zebu) and 275 crossbred animals originating from crosses of Simmental (1/2 Simmental, n = 30) and Angus (1/2 Angus, n = 245) sires with Nellore females. The effects of substituting L allele for S allele of GHR microsatellite across Nellore, Canchim and 1/2 Angus were significant for weight gain and body weight (P < 0.05). The IGF1 microsatellite allele substitutions of 229 for 225 within Nellore group and of 225 for 229 within 1/2 Angus were not significant for any of the traits.
Resumo:
Molecular biology techniques are of help in genetic improvement since they permit the identification, mapping and analysis of polymorphisms of genes encoding proteins that act on metabolic pathways involved in economically interesting traits. The somatotrophic axis, which essentially consists of growth hormone releasing hormone (GHRH), growth hormone (GH), insulin-like growth factors I and II (IGF-I and IGF-II), and their associated binding proteins and receptors (GHRHR, GHR, IGF-IR and IGF-IIR), plays a key role in the metabolism and physiology of mammalian growth. The objectives of the present study were to estimate the allele and genotype frequencies of the IGF-I/SnaBI, IGF-IR/TaqI and GHRH/HaeIII gene polymorphisms in different genetic groups of beef cattle and to determine associations between these polymorphisms and growth and carcass traits. For this purpose, genotyping was performed on 79 Nellore animals, 30 Canchim (5/8 Charolais+3/8 Zebu) animals and 275 crossbred cattle originating from the crosses of Simmental (n=30) and Angus (n=245) sires with Nellore females. In the association studies, traits of interest were analyzed using the GLM procedure of SAS and least square means of the genotypes were compared by the Tukey test. Associations of IGF-I/SnaBI genotypes with body weight and subcutaneous backfat were significant (p < 0.05), and nearly significant for longissimus dorsi area (p=0.06), with the 1313 genotype being favorable compared to the AB genotype. No significant associations were observed between this polymorphism and weight gain or carcass yield (P > 0.05). The IGF-IR/TaqI and GHRH/HaeIII polymorphisms showed no association with production traits. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The objective of this study was to determine the energy values of soybean oil (SBO) and tallow (T) combined in different ratios, and to evaluate their effects on the performance, body composition, and serum lipid levels of starter broilers. In experiment I, a digestibility trial was performed to determine the energy value of the SOB and T mixtures using 100 12 - to 21 -day-old broilers. In experiment II, 930 one-day-old broilers were used. Treatments consisted of the inclusion of 4% SBO and T inclusions at the following ratios: 0:100, 25:75, 50:50, 75:25, 100:0. Each treatment included six replicates. In experiment I, AME and AMEn linearly increased (P<0.01), as SBO participation in the mixture increased. In experiment II, the different lipid ratios quadratically influenced (P<0.01) body weight and weight gain at 21 days of age, increasing up to the ratio of 65.87:34.13. Serum lipids linearly decreased (P<0.05) as SOB inclusion in the diet increased. It was concluded that AME and AMEn of SBO and T at ratios of 0:100, 25:75, 50:50, 75:25, and 100:0 were 7.882 and 7.542, 8.384 and 8.076, 8.701 and 8.385, 8.801 and 8.727, and 9.478 and 9.271 kcal/kg, respectively. The best performance with no detrimental effect on carcass yield was obtained with the mixture of 75% SBO with 25% T. The highest dietary soybean oil level reduced serum lipid levels of 21-day-old broilers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The growth hormone 1 gene (GH1) is a candidate gene for body weight and weight gain in cattle since it plays a fundamental role in growth regulation. We investigated the GH1 gene AluI and DdeI restriction enzyme polymorphisms, located 149 bp apart in the cattle genome, as possible markers of the production potential of Canchim crossbreed cattle, a 5/8 Charolais (Bos taurus) and 3/8 Nelore (Bos indicus) breed developed in Brazil, by evaluating the birth weight, weaning weight, yearling weight and plasma insulin-like growth factor-1 (IGF-1) concentration of 7 month to 10 months old Canchim calves (n = 204) of known genealogy and which had been genotyped for the AluI and DdeI markers. Our results showed significant effect (p < 0.05) between the homozygous DdeI+/DdeI+ polymorphism and the estimated breeding value for weaning weight (ESB-WW), while the AluI leucine homozygous (L/L) and leucine/valine (L/V) heterozygous polymorphisms showed no significant effect on the traits studied. The restriction sites of the two enzymes led to the formation of haplotypes which also exerted a significant effect (p < 0.05) on the ESB-WW, with the largest difference being 8.5 kg in favor of the homozygous L plus DdeI+/L plus DdeI+ genotype over the heterozygous L plus DdeI-/V plus DdeI+ genotype.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The buffalo is a domestic animal species of growing world-wide importance. Research to improve genetic improvement programs is important to maintain the productivity of buffalo. The objective this research was to evaluate the growth of Brazilian buffalo to two years of age with different growth curves. Growth curves consolidate the information contained in the weight-age data into three or four biologically meaningful parameters. The data included 31,452 weights at birth and 120, 205, 365, 550 and 730 days of buffalo (n = 5,178) raised on pasture without supplementation. Logistic, Gompertz, quadratic logarithmic, and linear hyperbolic curves (designated L, G, QL, and LH, respectively) were fitted to the data by using proc NUN of SAS (SAS Institute, Inc., Cary, NC, USA). The parameters estimates for L [WT= A * (((1 + exp (-k * AGE)))**-m)] were A = 865.1 +/- 5.42; k= 0.0028 +/- 0.00002; M= 3.808 +/- 0.007; R(2) = 0.95. For G [WT= A * exp (-b * exp (-k * age)] the parameters estimates were A= 967.6 +/- 7.23; k = 0.00217 +/- 0.000015; b = -2.8152 +/- 0.00532. For QL [WT= A + b*age + k*(age*age) + m*log (age)] parameters estimates were A= 37.41 +/- 0.48; k= 0.00019 +/- 6.4E(-6); b= 0.539 +/- 0.006; m= 2.32 +/- 0.23; R(2)=0.96. For LH [WT= A + b*AGE + k*(1/AGE)] the parameters estimates were A= 23.15 +/- 0.44; k=15.16 +/- 0.66; b= 0.707 +/- 0.001; R(2)= 0.96. Each of these curves fit these data equally well and could be used for characterizing growth to two years in beef buffalo.