941 resultados para Classical super-integrable field theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi abbiamo studiato il comportamento delle entropie di Entanglement e dello spettro di Entanglement nel modello XYZ attraverso delle simulazioni numeriche. Le formule per le entropie di Von Neumann e di Renyi nel caso di una catena bipartita infinita esistevano già, ma mancavano ancora dei test numerici dettagliati. Inoltre, rispetto alla formula per l'Entropia di Entanglement di J. Cardy e P. Calabrese per sistemi non critici, tali relazioni presentano delle correzioni che non hanno ancora una spiegazione analitica: i risultati delle simulazioni numeriche ne hanno confermato la presenza. Abbiamo inoltre testato l'ipotesi che lo Schmidt Gap sia proporzionale a uno dei parametri d'ordine della teoria, e infine abbiamo simulato numericamente l'andamento delle Entropie e dello spettro di Entanglement in funzione della lunghezza della catena di spin. Ciò è stato possibile solo introducendo dei campi magnetici ''ad hoc'' nella catena, con la proprietà che l'andamento delle suddette quantità varia a seconda di come vengono disposti tali campi. Abbiamo quindi discusso i vari risultati ottenuti.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We show that exotic phases arise in generalized lattice gauge theories known as quantum link models in which classical gauge fields are replaced by quantum operators. While these quantum models with discrete variables have a finite-dimensional Hilbert space per link, the continuous gauge symmetry is still exact. An efficient cluster algorithm is used to study these exotic phases. The (2+1)-d system is confining at zero temperature with a spontaneously broken translation symmetry. A crystalline phase exhibits confinement via multi stranded strings between chargeanti-charge pairs. A phase transition between two distinct confined phases is weakly first order and has an emergent spontaneously broken approximate SO(2) global symmetry. The low-energy physics is described by a (2 + 1)-d RP(1) effective field theory, perturbed by a dangerously irrelevant SO(2) breaking operator, which prevents the interpretation of the emergent pseudo-Goldstone boson as a dual photon. This model is an ideal candidate to be implemented in quantum simulators to study phenomena that are not accessible using Monte Carlo simulations such as the real-time evolution of the confining string and the real-time dynamics of the pseudo-Goldstone boson.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the effects of a finite cubic volume with twisted boundary conditions on pseudoscalar mesons. We apply Chiral Perturbation Theory in the p-regime and introduce the twist by means of a constant vector field. The corrections of masses, decay constants, pseudoscalar coupling constants and form factors are calculated at next-to-leading order. We detail the derivations and compare with results available in the literature. In some case there is disagreement due to a different treatment of new extra terms generated from the breaking of the cubic invariance. We advocate to treat such terms as renormalization terms of the twisting angles and reabsorb them in the on-shell conditions. We confirm that the corrections of masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. Furthermore, we show that the matrix elements of the scalar (resp. vector) form factor satisfies the Feynman–Hellman Theorem (resp. the Ward–Takahashi identity). To show the Ward–Takahashi identity we construct an effective field theory for charged pions which is invariant under electromagnetic gauge transformations and which reproduces the results obtained with Chiral Perturbation Theory at a vanishing momentum transfer. This generalizes considerations previously published for periodic boundary conditions to twisted boundary conditions. Another method to estimate the corrections in finite volume are asymptotic formulae. Asymptotic formulae were introduced by Lüscher and relate the corrections of a given physical quantity to an integral of a specific amplitude, evaluated in infinite volume. Here, we revise the original derivation of Lüscher and generalize it to finite volume with twisted boundary conditions. In some cases, the derivation involves complications due to extra terms generated from the breaking of the cubic invariance. We isolate such terms and treat them as renormalization terms just as done before. In that way, we derive asymptotic formulae for masses, decay constants, pseudoscalar coupling constants and scalar form factors. At the same time, we derive also asymptotic formulae for renormalization terms. We apply all these formulae in combination with Chiral Perturbation Theory and estimate the corrections beyond next-to-leading order. We show that asymptotic formulae for masses, decay constants, pseudoscalar coupling constants are related by means of chiral Ward identities. A similar relation connects in an independent way asymptotic formulae for renormalization terms. We check these relations for charged pions through a direct calculation. To conclude, a numerical analysis quantifies the importance of finite volume corrections at next-to-leading order and beyond. We perform a generic Analysis and illustrate two possible applications to real simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this thesis is to study the distribution of the number of principal ideals generated by an irreducible element in an algebraic number field, namely in the non-unique factorization ring of integers of such a field. In particular we are investigating the size of M(x), defined as M ( x ) =∑ (α) α irred.|N (α)|≤≠ 1, where x is any positive real number and N (α) is the norm of α. We finally obtain asymptotic results for hl(x).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this chapter we will introduce the reader to the techniques of the Boundary Element Method applied to simple Laplacian problems. Most classical applications refer to electrostatic and magnetic fields, but the Laplacian operator also governs problems such as Saint-Venant torsion, irrotational flow, fluid flow through porous media and the added fluid mass in fluidstructure interaction problems. This short list, to which it would be possible to add many other physical problems governed by the same equation, is an indication of the importance of the numerical treatment of the Laplacian operator. Potential theory has pioneered the use of BEM since the papers of Jaswon and Hess. An interesting introduction to the topic is given by Cruse. In the last five years a renaissance of integral methods has been detected. This can be followed in the books by Jaswon and Symm and by Brebbia or Brebbia and Walker.In this chapter we shall maintain an elementary level and follow a classical scheme in order to make the content accessible to the reader who has just started to study the technique. The whole emphasis has been put on the socalled "direct" method because it is the one which appears to offer more advantages. In this section we recall the classical concepts of potential theory and establish the basic equations of the method. Later on we discuss the discretization philosophy, the implementation of different kinds of elements and the advantages of substructuring which is unavoidable when dealing with heterogeneous materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this work, we show how number theoretical problems can be fruitfully approached with the tools of statistical physics. We focus on g-Sidon sets, which describe sequences of integers whose pairwise sums are different, and propose a random decision problem which addresses the probability of a random set of k integers to be g-Sidon. First, we provide numerical evidence showing that there is a crossover between satisfiable and unsatisfiable phases which converts to an abrupt phase transition in a properly defined thermodynamic limit. Initially assuming independence, we then develop a mean-field theory for the g-Sidon decision problem. We further improve the mean-field theory, which is only qualitatively correct, by incorporating deviations from independence, yielding results in good quantitative agreement with the numerics for both finite systems and in the thermodynamic limit. Connections between the generalized birthday problem in probability theory, the number theory of Sidon sets and the properties of q-Potts models in condensed matter physics are briefly discussed

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this dissertation we explore the features of a Gauge Field Theory formulation for continuous spin particles (CSP). To make our discussion as self-contained as possible, we begin by introducing all the basics of Group Theory - and representation theory - which are necessary to understand where the CSP come from. We then apply what we learn from Group Theory to the study of the Lorentz and Poincaré groups, to the point where we are able to construct the CSP representation. Finally, after a brief review of the Higher-Spin formalism, through the Schwinger-Fronsdal actions, we enter the realm of CSP Field Theory. We study and explore all the local symmetries of the CSP action, as well as all of the nuances associated with the introduction of an enlarged spacetime, which is used to formulate the CSP action. We end our discussion by showing that the physical contents of the CSP action are precisely what we expected them to be, in comparison to our Group Theoretical approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We apply a three-dimensional approach to describe a new parametrization of the L-operators for the two-dimensional Bazhanov-Stroganov (BS) integrable spin model related to the chiral Potts model. This parametrization is based on the solution of the associated classical discrete integrable system. Using a three-dimensional vertex satisfying a modified tetrahedron equation, we construct an operator which generalizes the BS quantum intertwining matrix S. This operator describes the isospectral deformations of the integrable BS model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The diagrammatic strong-coupling perturbation theory (SCPT) for correlated electron systems is developed for intersite Coulomb interaction and for a nonorthogonal basis set. The construction is based on iterations of exact closed equations for many - electron Green functions (GFs) for Hubbard operators in terms of functional derivatives with respect to external sources. The graphs, which do not contain the contributions from the fluctuations of the local population numbers of the ion states, play a special role: a one-to-one correspondence is found between the subset of such graphs for the many - electron GFs and the complete set of Feynman graphs of weak-coupling perturbation theory (WCPT) for single-electron GFs. This fact is used for formulation of the approximation of renormalized Fermions (ARF) in which the many-electron quasi-particles behave analogously to normal Fermions. Then, by analyzing: (a) Sham's equation, which connects the self-energy and the exchange- correlation potential in density functional theory (DFT); and (b) the Galitskii and Migdal expressions for the total energy, written within WCPT and within ARF SCPT, a way we suggest a method to improve the description of the systems with correlated electrons within the local density approximation (LDA) to DFT. The formulation, in terms of renormalized Fermions LIDA (RF LDA), is obtained by introducing the spectral weights of the many electron GFs into the definitions of the charge density, the overlap matrices, effective mixing and hopping matrix elements, into existing electronic structure codes, whereas the weights themselves have to be found from an additional set of equations. Compared with LDA+U and self-interaction correction (SIC) methods, RF LDA has the advantage of taking into account the transfer of spectral weights, and, when formulated in terms of GFs, also allows for consideration of excitations and nonzero temperature. Going beyond the ARF SCPT, as well as RF LIDA, and taking into account the fluctuations of ion population numbers would require writing completely new codes for ab initio calculations. The application of RF LDA for ab initio band structure calculations for rare earth metals is presented in part 11 of this study (this issue). (c) 2005 Wiley Periodicals, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose that the Baxter's Q-operator for the quantum XYZ spin chain with open boundary conditions is given by the j -> infinity limit of the corresponding transfer matrix with spin-j (i.e., (2j + I)-dimensional) auxiliary space. The associated T-Q relation is derived from the fusion hierarchy of the model. We use this relation to determine the Bethe Ansatz solution of the eigenvalues of the fundamental transfer matrix. The solution yields the complete spectrum of the Hamiltonian. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose phase diagrams for an imbalanced (unequal number of atoms or Fermi surface in two pairing hyperfine states) gas of atomic fermions near a broad Feshbach resonance using mean-field theory. Particularly, in the plane of interaction and polarization we determine the region for a mixed phase composed of normal and superfluid components. We compare our prediction of phase boundaries with the recent measurement and find a good qualitative agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We derive a mean field algorithm for binary classification with Gaussian processes which is based on the TAP approach originally proposed in Statistical Physics of disordered systems. The theory also yields an approximate leave-one-out estimator for the generalization error which is computed with no extra computational cost. We show that from the TAP approach, it is possible to derive both a simpler 'naive' mean field theory and support vector machines (SVM) as limiting cases. For both mean field algorithms and support vectors machines, simulation results for three small benchmark data sets are presented. They show 1. that one may get state of the art performance by using the leave-one-out estimator for model selection and 2. the built-in leave-one-out estimators are extremely precise when compared to the exact leave-one-out estimate. The latter result is a taken as a strong support for the internal consistency of the mean field approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this thesis is twofold: to examine the validity of the rotating-field and cross-field theories of the single-phase induction motor when applied to a cage rotor machine; and to examine the extent to which skin effect is likely to modify the characteristics of a cage rotor machine. A mathematical analysis is presented for a single-phase induction motor in which the rotor parameters are modified by skin effect. Although this is based on the usual type of ideal machine, a new form of model rotor allows approximations for skin effect phenomena to be included as an integral part of the analysis. Performance equations appropriate to the rotating-field and cross-field theories are deduced, and the corresponding explanations for the steady-state mode of operation are critically examined. The evaluation of the winding currents and developed torque is simplified by the introduction of new dimensionless factors which are functions of the resistance/reactance ratios of the rotor and the speed. Tables of the factors are included for selected numerical values of the parameter ratios, and these are used to deduce typical operating characteristics for both cage and wound rotor machines. It is shown that a qualitative explanation of the mode of operation of a cage rotor machine is obtained from either theory; but the operating characteristics must be deduced from the performance equations of the rotating-field theory, because of the restrictions on the values of the rotor parameters imposed by skin effect.