967 resultados para Atomic force microscope
Resumo:
对基于扫描隧道显微镜(Scanning tunnel microscope,STM)及原子力显微镜(Atomicforcemicroscope,AFM)的纳米操作技术发展进行阐述,针对其中存在的主要问题,引述出机器人化纳米操作的必要性。接着,对国内外机器人化纳米操作系统的研究进展、现状及存在的主要问题进行详细分析,提出基于AFM的机器人化纳米操作系统的结构原型,并指出实现机器人化纳米操作所需解决的关键技术问题及相应的解决方案之一,为进行深入的机器人化纳米操作研究提供了可以借鉴的研究方向。
Resumo:
针对原子力显微镜(AFM)纳米成像中存在的失真问题,研究了通过探针建模实现AFM扫描图像重构方法.目前探针盲建模算法在重构AFM图像时存在较大误差,因此提出基于探针模型预估计的AFM扫描图像重构方法.该方法采用分区探针针尖建模,并通过基于该探针模型的反卷积运算实现AFM扫描图像重构,获得比较接近真实形貌的AFM扫描图像.文中介绍了算法的具体步骤,通过仿真和实验结果证明,该方法能够有效降低AFM图像重构时引入的误差,得到的图像更能反映样品表面真实的形貌。
Resumo:
采用一种无耦合、三轴精确定位的纳米运动平台作为扫描器,研制了一种新型原子力显微镜(AFM).该AFM有效消除了通常使用的单管式压电陶瓷扫描器扫描过程中运动耦合产生的两种结构误差--交叉耦合误差和扫描范围误差,极大提高了纳米测量及操作的精度。
Resumo:
针对基于原子力显微镜(AFM)的机器人化纳米操作,对探针作用下探针—基片—微粒之间纳观力的作用规律进行了初步分析.指出起主要作用的纳观力为范德华力、接触斥力、纳米摩擦力、毛细作用力以及纳米静电力等五种,并初步推导了各种纳观力的表达形式.通过力—距离曲线仿真与实验验证了所进行分析的合理性;该分析有助于进行纳米操作的精确控制.
Resumo:
提出了交互式纳米操作的实现方法,搭建了一个具有力觉与视觉反馈的交互式纳米操作系统.操作者通过该系统不仅可以实时感受到作用在原子力显微镜(AFM)探针上的力,而且可以实时观察到纳米环境在AFM操作下的变化过程,使得对微观世界的纳米操作如同在宏观世界搬运物体一样直观、灵活.实验结果证实了本系统的高效性及先进性.
Resumo:
针对样本扫描模式原子力显微镜,对其管式扫描器-样本-探针系统进行了运动学分析,建立了该系统的运动学模型,该模型表明:对于给定原子力显微镜扫描器,样本上与探针接触点的横向和纵向位移取决于探针尖端相对于扫描管轴心的偏置量、所加电压(或名义扫描范围)及样本厚度。据此模型,对由于弯曲运动模式所产生的两种重要误差—交叉耦合误差及扫描范围误差进行了定量分析,分析表明:扫描范围误差主要受样本厚度及名义扫描范围影响,而Z向交叉耦合误差主要受探针偏置量及名义扫描范围影响,实验验证了所建立的运动学模型和误差计算公式的正确性;另外,还提出了相应的减小误差的方法。
Resumo:
自从1986年G. Binnig等发明原子力显微镜(AFM)后,纳米科技研究得到了快速发展,纳米科技研究的最终目标之一是从纳米甚至分子与原子尺度上制造功能器件或系统,而实现此目标的使能技术是具有能在纳米尺度上进行精确可控操作与装配的方法、技术与装置。为此,学者们对基于AFM的纳米操作进行了大量研究,但由于对纳米尺度上物体的受力与运动方式等物理机理认识的不足、AFM探针精确定位技术的缺乏、以及操作过程中实时反馈信息的缺乏,使得操作者无法对纳米操作的中间过程及最终结果进行精确控制,纳米操作的成功率、效率及灵活性低下,从而严重阻碍了基于AFM的纳米操作的发展与应用。对此,本文在分析目前研究现状及存在问题的基础上,结合机器人学理论与技术,研制了基于AFM且具有实时力/触觉及视觉反馈的机器人化纳米操作系统,通过对纳米环境中物体的受力与运动方式进行分析与建模,从理论与实验上对AFM探针的驱动与精确定位、实时三维纳米力/触觉及实时纳米视觉信息的反馈与控制等关键问题进行了深入研究。 在AFM探针驱动与精确定位方面,本文在对压电陶瓷驱动器电压-位移的迟滞/非线性特性进行理论与实验分析的基础上,提出了基于复现扫描轨迹的驱动方法,并对驱动器运动学耦合误差、探针悬臂变形引起的针尖偏移误差进行了定量分析与补偿,从而获得了很高的探针定位精度。 在实时三维纳米力/触觉信息反馈与控制方面,本文在对探针-微粒-基片之间各种纳米力进行初步理论分析的基础上,将AFM探针作为三维纳米力传感器,通过对探针受力-悬臂变形进行建模,并根据实时检测的经光学杠杆放大后的悬臂变形信号获得了探针所受三维纳米力的大小,将此三维力经比例放大后送入力/触觉设备,操作者通过其操作手柄可实时感受到探针所受的力/触觉反馈信息,并据此反馈信息对施加在探针上作用力的大小及方向进行在线调节与控制。 在实时纳米视觉信息反馈与控制方面,本文利用增强现实技术,通过对微粒的动力学建模得出操作微粒所需施加在探针上的作用力大小,并结合实际施加在探针上的力信息来判断微粒能否运动;通过对微粒进行运动学建模得出其运动模式,再结合探针的实际位置信息得出微粒在探针操作下的实时位置与姿态(或刻画时刻痕的位置与尺寸),以此对视觉界面上显示的微粒位置与姿态及纳米环境进行局部更新,实现了微粒运动过程及纳米环境变化的实时视觉反馈,操作者借助此视觉反馈信息可对探针的作用位置及运动轨迹进行实时调节与控制。 在上述研究基础上,研制成功了基于AFM且具有实时力/触觉及视觉反馈的高精度机器人化纳米操作系统。利用该系统,操作者不仅可以实时感受到探针与微粒或基片之间的相互作用力,还可以实时观察到微粒的运动过程及纳米环境的变化,并据此在线控制探针的作用位置与运动轨迹、以及施加在探针上作用力的大小与方向,从而实现了对纳米操作过程及最终操作结果的精确控制,大大提高了纳米操作的成功率、效率及灵活性。纳米刻画和多壁碳纳米管的操作实验验证了该机器人化纳米操作系统的有效性。 另外,本文针对目前纳电子器件装配制造方面的一个关键技术难题,探索结合了介电电泳与本机器人化纳米操作方式(粗、精两级操作方式),实现了单根碳纳米管与微电极的精确定位装配与电连接,为装配制造基于单纳米管/线的纳米器件提供了一种新颖可行的方法与技术。 本文的研究工作为基于AFM的机器人化纳米操作提供了可以借鉴的理论与实验经验,有助于推动基于AFM的纳米操作与制造技术的发展。
Resumo:
For protons of energy up to a few MeV, the temporal evolution of etched latent tracks in CR-39 nuclear track detector has been numerically modeled by assuming that the electronic energy loss of the protons governs the latent track formation. The technique is applied in order to obtain the energy spectrum of high intensity laser driven proton beams, with high accuracy. The precise measurement of the track length and areal track density have been achieved by scanning short etched, highly populated CR-39 employing atomic force microscope.
Resumo:
Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (α, β and γ), Of special interest for various applications are non-centrosymmetric polymorphs: β-glycine and γ-glycine. The most useful β-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of β-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of β-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the β-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by both internal and external polarization screening mediated by defects and topographic features. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that β-glycine is a uniaxial ferroelectric with the properties controlled by the charged domain walls which in turn can be manipulated by external bias. Besides, nonlinear optical properties of β-glycine were investigated by a second harmonic generation (SHG) method. SHG method confirmed that the 2-fold symmetry is preserved in as-grown crystals, thus reflecting the expected P21 symmetry of the β-phase. Spontaneous polarization direction is found to be parallel to the monoclinic [010] axis and directed along the crystal length. These data are confirmed by computational molecular modeling. Optical measurements revealed also relatively high values of the nonlinear optical susceptibility (50% greater than in the z-cut quartz). The potential of using stable β-glycine crystals in various applications are discussed in this work.
Resumo:
Thesis (Ph.D.)--University of Washington, 2013
Resumo:
Fabricating Ge and Si integrated structures with nanoscale accuracy is a challenging pursuit essential for novel advances in electronics and photonics. While several scanning probe-based techniques have been proposed, no current technique offers control of nanostructure size, shape, placement, and chemical composition. To this end, atomic force microscope direct write uses a high electric field (> 109 V m-1) to create nanoscale features as fast as 1 cm s-1 by reacting a liquid precursor with a biased AFM tip. In this work, I present the first results on fabricating inorganic nanostructures via AFM direct write. Using diphenylgermane (DPG) and diphenylsilane (DPS), carbon-free germanium and silicon nanostructures (SIMS, x-ray PEEM) are fabricated. For this chemistry, I propose a model that involves electron capture and precursor fragmentation under the high electric field. To verify this model, experimental data and simulations are presented. High field chemistry for DPG and DPS has also been demonstrated for both sequential deposition and the creation of nanoscale heterostuctures, in addition to microscale deposition using a flexible stamp approach. This high field chemistry approach to the deposition of organometallic precursors could offer a low-cost, high throughput alternative for future optical, electronic, and photovoltaic applications.
Resumo:
The main objective of this thesis work is to optimize the growth conditions for obtaining crystalline and conducting Lao.5Sro.5Co03 (LSCO) and Lao.5Sro.5Coo.5.5Nio.5O3 (LSCNO) thin films at low processing temperatures. The films are prepared by radio frequency magnetron sputtering under various deposition conditions. The thin films were used as electrodes for the fabrication of ferroelectric capacitors using BaO.7SrO.3 Ti03 (BST) and PbZro.52 Tio.4803 (PZT). The structural and transport properties of the La1_xSrxCo03 and Lao.5Sro.5Co1_xNix03 are also investigated. The characterization of the bulk and the thin films were performed using different tools. A powder X-ray diffractometer was used to analyze the crystalline nature of the material. The transport properties were investigated by measuring the temperature dependence of resistivity using a four probe technique. The magnetoresistance and thermoelectric power were also used to investigate the transport properties. Atomic force microscope was used to study the surface morphology and thin film roughness. The ferroelectric properties of the capacitors were investigated using RT66A ferroelectric tester.
Resumo:
Fe–Ni based amorphous thin films were prepared by thermal evaporation. These films were irradiated by 108 MeV Ag8+ ions at room temperature with fluences ranging from 1 1012 to 3 1013 ions/cm2 using a 15 UD Pelletron accelerator. Glancing angle x-ray diffraction studies showed that the irradiated films retain their amorphous nature. The topographical evolution of the films under swift heavy ion SHI bombardment was probed using atomic force microscope and it was noticed that surface roughening was taking place with ion beam irradiation. Magnetic measurements using a vibrating sample magnetometer showed that the coercivity of the films increases with an increase in the ion fluence. The observed coercivity changes are correlated with topographical evolution of the films under SHI irradiation. The ability to modify the magnetic properties via SHI irradiation could be utilized for applications in thin film magnetism
Resumo:
Metglas 2826 MB having a nominal composition of Fe40Ni38Mo4B18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe40Ni38Mo4B18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electromechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe40Ni38Mo4B18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe40Ni38Mo4B18. The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo)23B6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes
Resumo:
Am Institut für Mikrostrukturtechnologie und Analytik wurde eine neue Technik entwickelt, die neue Anwendungen und Methoden der Mikro- und Nanostrukturierung auf Basis eines neuen Verfahrens erschlossen hat. NANOJET führt über die passive Rastersondenmikroskopie hinaus zu einem vielseitigen, aktiven Bearbeitungswerkzeug auf der Mikro- und Nanometerskala. NANOJET (NANOstructuring Downstream PlasmaJET) ist eine aktive Rasterkraft-Mikroskopie-Sonde. Radikale (chemisch aktive Teilchen, die ein ungepaartes Valenzelektron besitzen) strömen aus dem Ende einer ultradünnen, hohlen Rasterkraftmikroskop-Spitze. Dadurch wird es möglich, über die übliche passive Abtastung einer Probenoberfläche hinausgehend, diese simultan und in-situ durch chemische Reaktionen zu verändern. Die Abtragung von Material wird durch eine chemische Ätzreaktion erreicht. In dieser Arbeit wurde zum größten Teil Photoresist als Substrat für die Ätzexperimente verwendet. Für das Ätzen des Resists wurden die Atome des Fluors und des Sauerstoffs im Grundzustand als verantwortlich identifiziert. Durch Experimente und durch Ergänzung von Literaturdaten wurde die Annahme bestätigt, dass Sauerstoffradikale mit Unterstützung von Fluorradikalen für die hohen erzielten Ätzraten verantwortlich sind. Die Beimischung von Fluor in einem Sauerstoffplasma führt zu einer Verringerung der Aktivierungsenergie für die Ätzreaktion gegenüber Verwendung reinen Sauerstoffs. In weiterer Folge wurde ein Strukturierungsverfahren dargestellt. Hierbei wurden "geformte Kapillaren" (mikrostrukturierte Aperturen) eingesetzt. Die Herstellung der Aperturen erfolgte durch einen elektrochemischen Ätzstop-Prozess. Die typische Größe der unter Verwendung der "geformten Kapillaren" geätzten Strukturen entsprach den Kapillarenöffnungen. Es wurde ein Monte-Carlo Simulationsprogramm entwickelt, welches den Transport der reaktiven Teilchen in der langen Transportröhre simulierte. Es wurde sowohl die Transmission der Teilchen in der Transportröhre und der Kapillare als auch ihre Winkelverteilung nach dem Verlassen der Kapillare berechnet. Das Aspektverhältnis der Röhren hat dabei einen sehr starken Einfluss. Mit einem steigenden Aspektverhältnis nahm die Transmission exponentiell ab. Die geschaffene experimentelle Infrastruktur wurde genutzt, um auch biologische Objekte zu behandeln und zu untersuchen. Hierfür wurde eine neue Methodik entwickelt, die eine dreidimensionale Darstellung des Zellinneren erlaubt. Dies wurde durch die kontrollierte Abtragung von Material aus der Zellmembran durchgeführt. Die Abtragung der Zellmembran erfolgte mittels Sauerstoffradikalen, die durch eine hohle Spitze lokalisiert zum Ort der Reaktion transportiert wurden. Ein piezoresistiver Cantilever diente als Sensor in dem zur Bildgebung eingesetzten RKM. Das entwickelte Verfahren ermöglicht es nun erstmals, schonend Zellen zu öffnen und die innen liegenden Organellen weiter zu untersuchen. Als Nachweis für weitere Verwendungsmöglichkeiten des NANOJET-Verfahrens wurde auch Knochenmaterial behandelt. Die Ergebnisse dieser Experimente zeigen klar, dass das Verfahren für vielfältige biologische Materialien verwendbar ist und somit nun ein weiter Anwendungskreis in der Biologie und Medizin offen steht.