483 resultados para Affine Homography
Resumo:
The translation of an ensemble of model runs into a probability distribution is a common task in model-based prediction. Common methods for such ensemble interpretations proceed as if verification and ensemble were draws from the same underlying distribution, an assumption not viable for most, if any, real world ensembles. An alternative is to consider an ensemble as merely a source of information rather than the possible scenarios of reality. This approach, which looks for maps between ensembles and probabilistic distributions, is investigated and extended. Common methods are revisited, and an improvement to standard kernel dressing, called ‘affine kernel dressing’ (AKD), is introduced. AKD assumes an affine mapping between ensemble and verification, typically not acting on individual ensemble members but on the entire ensemble as a whole, the parameters of this mapping are determined in parallel with the other dressing parameters, including a weight assigned to the unconditioned (climatological) distribution. These amendments to standard kernel dressing, albeit simple, can improve performance significantly and are shown to be appropriate for both overdispersive and underdispersive ensembles, unlike standard kernel dressing which exacerbates over dispersion. Studies are presented using operational numerical weather predictions for two locations and data from the Lorenz63 system, demonstrating both effectiveness given operational constraints and statistical significance given a large sample.
Resumo:
In this paper, we consider codimension one Anosov actions of R(k), k >= 1, on closed connected orientable manifolds of dimension n vertical bar k with n >= 3. We show that the fundamental group of the ambient manifold is solvable if and only if the weak foliation of codimension one is transversely affine. We also study the situation where one 1-parameter subgroup of R(k) admits a cross-section, and compare this to the case where the whole action is transverse to a fibration over a manifold of dimension n. As a byproduct, generalizing a Theorem by Ghys in the case k = 1, we show that, under some assumptions about the smoothness of the sub-bundle E(ss) circle plus E(uu), and in the case where the action preserves the volume, it is topologically equivalent to a suspension of a linear Anosov action of Z(k) on T(n).
Resumo:
The Bullough-Dodd model is an important two-dimensional integrable field theory which finds applications in physics and geometry. We consider a conformally invariant extension of it, and study its integrability properties using a zero curvature condition based on the twisted Kac-Moody algebra A(2)((2)). The one- and two-soliton solutions as well as the breathers are constructed explicitly. We also consider integrable extensions of the Bullough-Dodd model by the introduction of spinor (matter) fields. The resulting theories are conformally invariant and present local internal symmetries. All the one-soliton solutions, for two examples of those models, are constructed using a hybrid of the dressing and Hirota methods. One model is of particular interest because it presents a confinement mechanism for a given conserved charge inside the solitons. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper proposes a method to locate and track people by combining evidence from multiple cameras using the homography constraint. The proposed method use foreground pixels from simple background subtraction to compute evidence of the location of people on a reference ground plane. The algorithm computes the amount of support that basically corresponds to the ""foreground mass"" above each pixel. Therefore, pixels that correspond to ground points have more support. The support is normalized to compensate for perspective effects and accumulated on the reference plane for all camera views. The detection of people on the reference plane becomes a search for regions of local maxima in the accumulator. Many false positives are filtered by checking the visibility consistency of the detected candidates against all camera views. The remaining candidates are tracked using Kalman filters and appearance models. Experimental results using challenging data from PETS`06 show good performance of the method in the presence of severe occlusion. Ground truth data also confirms the robustness of the method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Motivated in part by the study of Fadell-Neuwirth short exact sequences, we determine the lower central and derived series for the braid groups of the finitely-punctured sphere. For n >= 1, the class of m-string braid groups B(m)(S(2)\{x(1), ... , x(n)}) of the n-punctured sphere includes the usual Artin braid groups B(m) (for n = 1), those of the annulus, which are Artin groups of type B (for n = 2), and affine Artin groups of type (C) over tilde (for n = 3). We first consider the case n = 1. Motivated by the study of almost periodic solutions of algebraic equations with almost periodic coefficients, Gorin and Lin calculated the commutator subgroup of the Artin braid groups. We extend their results, and show that the lower central series (respectively, derived series) of B(m) is completely determined for all m is an element of N (respectively, for all m not equal 4). In the exceptional case m = 4, we obtain some higher elements of the derived series and its quotients. When n >= 2, we prove that the lower central series (respectively, derived series) of B(m)(S(2)\{x(1), ... , x(n)}) is constant from the commutator subgroup onwards for all m >= 3 (respectively, m >= 5). The case m = 1 is that of the free group of rank n - 1. The case n = 2 is of particular interest notably when m = 2 also. In this case, the commutator subgroup is a free group of infinite rank. We then go on to show that B(2)(S(2)\{x(1), x(2)}) admits various interpretations, as the Baumslag-Solitar group BS(2, 2), or as a one-relator group with non-trivial centre for example. We conclude from this latter fact that B(2)(S(2)\{x(1), x(2)}) is residually nilpotent, and that from the commutator subgroup onwards, its lower central series coincides with that of the free product Z(2) * Z. Further, its lower central series quotients Gamma(i)/Gamma(i+1) are direct sums of copies of Z(2), the number of summands being determined explicitly. In the case m >= 3 and n = 2, we obtain a presentation of the derived subgroup, from which we deduce its Abelianization. Finally, in the case n = 3, we obtain partial results for the derived series, and we prove that the lower central series quotients Gamma(i)/Gamma(i+1) are 2-elementary finitely-generated groups.
Resumo:
In this paper we study the spectrum of integral group rings of finitely generated abelian groups G from the scheme-theoretic viewpoint. We prove that the (closed) singular points of Spec Z[G], the (closed) intersection points of the irreducible components of Spec Z[G] and the (closed) points over the prime divisors of vertical bar t(G)vertical bar coincide. We also determine the formal completion of Spec Z[G] at a singular point.
Resumo:
Given an oriented Riemannian surface (Sigma, g), its tangent bundle T Sigma enjoys a natural pseudo-Kahler structure, that is the combination of a complex structure 2, a pseudo-metric G with neutral signature and a symplectic structure Omega. We give a local classification of those surfaces of T Sigma which are both Lagrangian with respect to Omega and minimal with respect to G. We first show that if g is non-flat, the only such surfaces are affine normal bundles over geodesics. In the flat case there is, in contrast, a large set of Lagrangian minimal surfaces, which is described explicitly. As an application, we show that motions of surfaces in R(3) or R(1)(3) induce Hamiltonian motions of their normal congruences, which are Lagrangian surfaces in TS(2) or TH(2) respectively. We relate the area of the congruence to a second-order functional F = f root H(2) - K dA on the original surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We prove the existence of an associated family of G-structure preserving minimal immersions into semi-Riemannian manifolds endowed with a compatible infinitesimally homogeneous G-structure. We will study in more details minimal embeddings into product of space forms.
Resumo:
A determinação da taxa de juros estrutura a termo é um dos temas principais da gestão de ativos financeiros. Considerando a grande importância dos ativos financeiros para a condução das políticas econômicas, é fundamental para compreender a estrutura que é determinado. O principal objetivo deste estudo é estimar a estrutura a termo das taxas de juros brasileiras, juntamente com taxa de juros de curto prazo. A estrutura a termo será modelado com base em um modelo com uma estrutura afim. A estimativa foi feita considerando a inclusão de três fatores latentes e duas variáveis macroeconômicas, através da técnica Bayesiana da Cadeia de Monte Carlo Markov (MCMC).
Resumo:
Esta tese dedica-se ao estudo dos sistemas tributários. Eu investigo como um sistema tributário afeta as escolhas dos indivíduos e consequentemente os recursos do país. Eu mostro como um sistema tributário induz as escolhas das pessoas, determinado assim as alocações de trabalho, produto e consumo da economia. No primeiro e segundo capítulo eu examino a taxação sobre os indivíduos, enquanto que no terceiro e quarto capítulos analiso a incidîncia tributária sobre os diferentes agentes da sociedade. No capítulo um, eu examino o sistema tributário ótimo, seguindo Mirrlees (1971) e Saez (2001). Eu mostro como seria este sistema tributário no Brasil, país com profunda desigualdade de renda entre os indivíduos. Ademais, eu investigo o sistema tributário afim, considerado uma alternativa entre os sistemas atual e o ótimo. No segundo capítulo eu analiso o sistema tributário conhecido como sacríficio igual. Mostro como o sistema tribuária derivado por Young (1987), redesenhado por Berliant and Gouveia (1993), se comporta no teste de eficiência derivado por Werning (2007). No terceiro e quarto capítulo eu examino como propostas de reforma tribuária afetariam a economia brasileira. No capítulo três investigo como uma reforma tributária atingiria as diferentes classes socias. No capítulo quatro, eu estudo as melhores direções para uma reforma tributária no Brasil, mostrando qual arranjo de impostos é menos ineficiente para o país. Por fim, investigo os efeitos de duas propostas de reforma tributária sobre a economia brasileira. Explicito quais os ganhos de produto e bem estar de cada proposta. Dedico especial atenção aos ganhos/perdas de curto prazo, pois estes podem inviabilizar uma reforma tributária, mesmo esta gerando ganhos de longo prazo.
Resumo:
Esta tese é composta de três artigos que analisam a estrutura a termo das taxas de juros usando diferentes bases de dados e modelos. O capítulo 1 propõe um modelo paramétrico de taxas de juros que permite a segmentação e choques locais na estrutura a termo. Adotando dados do tesouro americano, duas versões desse modelo segmentado são implementadas. Baseado em uma sequência de 142 experimentos de previsão, os modelos propostos são comparados à benchmarks e concluí-se que eles performam melhor nos resultados das previsões fora da amostra, especialmente para as maturidades curtas e para o horizonte de previsão de 12 meses. O capítulo 2 acrescenta restrições de não arbitragem ao estimar um modelo polinomial gaussiano dinâmico de estrutura a termo para o mercado de taxas de juros brasileiro. Esse artigo propõe uma importante aproximação para a série temporal dos fatores de risco da estrutura a termo, que permite a extração do prêmio de risco das taxas de juros sem a necessidade de otimização de um modelo dinâmico completo. Essa metodologia tem a vantagem de ser facilmente implementada e obtém uma boa aproximação para o prêmio de risco da estrutura a termo, que pode ser usada em diferentes aplicações. O capítulo 3 modela a dinâmica conjunta das taxas nominais e reais usando um modelo afim de não arbitagem com variáveis macroeconômicas para a estrutura a termo, afim de decompor a diferença entre as taxas nominais e reais em prêmio de risco de inflação e expectativa de inflação no mercado americano. Uma versão sem variáveis macroeconômicas e uma versão com essas variáveis são implementadas e os prêmios de risco de inflação obtidos são pequenos e estáveis no período analisado, porém possuem diferenças na comparação dos dois modelos analisados.
Resumo:
There is strong empirical evidence that risk premia in long-term interest rates are time-varying. These risk premia critically depend on interest rate volatility, yet existing research has not examined the im- pact of time-varying volatility on excess returns for long-term bonds. To address this issue, we incorporate interest rate option prices, which are very sensitive to interest rate volatility, into a dynamic model for the term structure of interest rates. We estimate three-factor affine term structure models using both swap rates and interest rate cap prices. When we incorporate option prices, the model better captures interest rate volatility and is better able to predict excess returns for long-term swaps over short-term swaps, both in- and out-of-sample. Our results indicate that interest rate options contain valuable infor- mation about risk premia and interest rate dynamics that cannot be extracted from interest rates alone.
Resumo:
We develop an affine jump diffusion (AJD) model with the jump-risk premium being determined by both idiosyncratic and systematic sources of risk. While we maintain the classical affine setting of the model, we add a finite set of new state variables that affect the paths of the primitive, under both the actual and the risk-neutral measure, by being related to the primitive's jump process. Those new variables are assumed to be commom to all the primitives. We present simulations to ensure that the model generates the volatility smile and compute the "discounted conditional characteristic function'' transform that permits the pricing of a wide range of derivatives.
Resumo:
Our focus is on information in expectation surveys that can now be built on thousands (or millions) of respondents on an almost continuous-time basis (big data) and in continuous macroeconomic surveys with a limited number of respondents. We show that, under standard microeconomic and econometric techniques, survey forecasts are an affine function of the conditional expectation of the target variable. This is true whether or not the survey respondent knows the data-generating process (DGP) of the target variable or the econometrician knows the respondents individual loss function. If the econometrician has a mean-squared-error risk function, we show that asymptotically efficient forecasts of the target variable can be built using Hansens (Econometrica, 1982) generalized method of moments in a panel-data context, when N and T diverge or when T diverges with N xed. Sequential asymptotic results are obtained using Phillips and Moon s (Econometrica, 1999) framework. Possible extensions are also discussed.