985 resultados para 11Q DELETION
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.
Resumo:
Often in biomedical research, we deal with continuous (clustered) proportion responses ranging between zero and one quantifying the disease status of the cluster units. Interestingly, the study population might also consist of relatively disease-free as well as highly diseased subjects, contributing to proportion values in the interval [0, 1]. Regression on a variety of parametric densities with support lying in (0, 1), such as beta regression, can assess important covariate effects. However, they are deemed inappropriate due to the presence of zeros and/or ones. To evade this, we introduce a class of general proportion density, and further augment the probabilities of zero and one to this general proportion density, controlling for the clustering. Our approach is Bayesian and presents a computationally convenient framework amenable to available freeware. Bayesian case-deletion influence diagnostics based on q-divergence measures are automatic from the Markov chain Monte Carlo output. The methodology is illustrated using both simulation studies and application to a real dataset from a clinical periodontology study.
Resumo:
Metastasizing pleomorphic adenoma (MPA) is a rare tumour, and its mechanism of metastasis still is unknown. To date, there has been no study on MPA genomics. We analysed primary and secondary MPAs with array comparative genomic hybridization to identify somatic copy number alterations and affected genes. Tumour DNA samples from primary (parotid salivary gland) and secondary (scalp skin) MPAs were subjected to array comparative genomic hybridization investigation, and the data were analysed with NEXUS COPY NUMBER DISCOVERY. The primary MPA showed copy number losses affecting 3p22.2p14.3 and 19p13.3p123, and a complex pattern of four different deletions at chromosome 6. The 3p deletion encompassed several genes: CTNNB1, SETD2, BAP1, and PBRM1, among others. The secondary MPA showed a genomic profile similar to that of the primary MPA, with acquisition of additional copy number changes affecting 9p24.3p13.1 (loss), 19q11q13.43 (gain), and 22q11.1q13.33 (gain). Our findings indicated a clonal origin of the secondary MPA, as both tumours shared a common profile of genomic copy number alterations. Furthermore, we were able to detect in the primary tumour a specific pattern of copy number alterations that could explain the metastasizing characteristic, whereas the secondary MPA showed a more unbalanced genome.
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
This paper argues that the distinction between deletion and erasure proposed by Chomsky (1995) to account for different checking possibilities should be abandoned on both conceptual and empirical grounds. As an alternative, the paper outlines an analysis based solely on deletion.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
Aggregatibacter actinomycetemcomitans is an important etiologic agent of the periodontitis and is associated with extra-oral infections. In this study, the detection of the ltxA gene as well as the ltx promoter region from leukotoxic A. actinomycetemcomitans isolated from 50 Brazilian patients with periodontitis and 50 healthy subjects was performed. The leukotoxic activity on HL-60 cells was also evaluated. Leukotoxic activity was determined using a trypan blue exclusion method. The 530 bp deletion in the promoter region was evaluated by PCR using a PRO primer pair. A. actinomycetemcomitans was detected by culture and directly from crude subgingival biofilm by PCR using specific primers. By culture, A. actinomycetemcomitans was detected in nine (18%) of the periodontal patients and one (2%) healthy subject. However, by PCR, this organism was detected in 44% of the periodontal patients and in 16% of the healthy subjects. It was verified a great discrepancy between PCR detection of the ltx operon promoter directly from crude subgingival biofilm and from bacterial DNA. Only one periodontal sample harbored highly leukotoxic A. actinomycetemcomitans. Moreover, biotype II was the most prevalent and no correlation between biotypes and leukotoxic activity was observed. The diversity of leukotoxin expression by A. actinomycetemcomitans suggests a role of this toxin in the pathogenesis of periodontal disease and other infectious diseases.
Resumo:
In children with Duchenne muscular dystrophy, color vision losses have been related to dystrophin deletions downstream of exon 30, which affect a dystrophin isoform, Dp260, present in the retina. To further evaluate visual function in DMD children, we measured spatial, temporal, and chromatic red-green and blue-yellow contrast sensitivity in two groups of DMD children with gene deletion downstream and upstream of exon 30. Psychophysical spatial contrast sensitivity was measured for low, middle, and high spatial frequencies with achromatic gratings and for low and middle frequencies with red-green and blue-yellow chromatic gratings. Temporal contrast sensitivity was also measured with achromatic stimuli. A reduction in sensitivity at all spatial luminance contrasts was found for the DMD patients with deletion downstream of exon 30. Similar results were found for temporal luminance contrast sensitivity. Red-green chromatic contrast sensitivity was reduced in DMD children with deletion downstream of exon 30, whereas blue-yellow chromatic contrast sensitivity showed no significant differences. We conclude that visual function is impaired in DMD children. Furthermore, we report a genotype-phenotype relationship because the visual impairment occurred in children with deletion downstream but not upstream of exon 30, affecting the retinal isoform of dystrophin Dp260.
Resumo:
This article reports the use of the GsuI restriction enzyme to differentiate genotypes of Bovine Coronavirus (BCoV), based on an 18-nucleotide deletion of S1-coding region found in one of the two genotypes. It was concluded that this assay can be used as a rapid tool for BCoV genotypes differentiation.
Resumo:
The biological cause of Pork Stress syndrome, which leads to PSE (pale, soft, exudative) meat, is excessive release of Ca(2+) ions, which is promoted by a genetic mutation in the ryanodine receptors (RyR) located in the sarcoplasmic reticulum of the skeletal muscle cells. We examined the relationship between the formation of PSE meat under halothane treatment and heat stress exposure in chicken alpha RYR hot spot fragments. Four test groups were compared: 1) birds slaughtered without any treatment, i.e., the control group (C); 2) birds slaughtered immediately after halothane treatment (H); 3) birds slaughtered immediately after heat stress treatment (HS), and 4) birds exposed to halothane and to heat stress (H+HS), before slaughtering. Breast muscle mRNA was extracted, amplified by RT-PCR, and sequenced. PSE meat was evaluated using color determination (L*value). The most common alteration was deletion of a single nucleotide, which generated a premature stop codon, resulting in the production of truncated proteins. The highest incidence of nonsense transcripts came with exposure to halothane; 80% of these abnormal transcripts were detected in H and H+HS groups. As a consequence, the incidence of abnormal meat was highest in the H+HS group (66%). In HS, H, and C groups, PSE meat developed in 60, 50, and 33% of the samples, respectively. Thus, halothane apparently modulates alpha RYR gene expression in this region, and synergically with exposure to heat stress, causes Avian Stress syndrome, resulting in PSE meat in broiler chickens.
Resumo:
Background: Calcineurin, a serine/threonine-specific protein phosphatase, plays an important role in the control of cell morphology and virulence in fungi. Calcineurin regulates localization and activity of a transcription factor called CRZ1. Recently, we characterize Aspergillus fumigatus CRZ1 homologue, AfCrzA. Here, we investigate which pathways are influenced by A. fumigatus AfCrzA during a short pulse of calcium by comparatively determining the transcriptional profile of A. fumigatus wild type and.AfcrzA mutant strains. Results: We were able to observe 3,622 genes modulated in at least one timepoint in the mutant when compared to the wild type strain (3,211 and 411 at 10 and 30 minutes, respectively). Decreased mRNA abundance in the Delta crzA was seen for genes encoding calcium transporters, transcription factors and genes that could be directly or indirectly involved in calcium metabolism. Increased mRNA accumulation was observed for some genes encoding proteins involved in stress response. AfCrzA overexpression in A. fumigatus increases the expression of several of these genes. The deleted strain of one of these genes, AfRcnA, belonging to a class of endogenous calcineurin regulators, calcipressins, had more calcineurin activity after exposure to calcium and was less sensitive to menadione 30 mu M, hydrogen peroxide 2.5 mM, EGTA 25 mM, and MnCl(2) 25 mM. We constructed deletion, overexpression, and GFP fusion protein for the closely related A. nidulans AnRcnA. GFP
Resumo:
Ring chromosomes are often associated with abnormal phenotypes due to loss of genomic material and also because of ring instability at mitosis after sister chromatid exchange events. We investigated ring chromosome instability in six patients with ring chromosomes 4, 14, 15, and 18 by examining 48- and 72-h lymphocyte cultures at the first, second and subsequent cell divisions after bromodeoxyuridine incorporation. Although most cells from all patients showed only one monocentric ring chromosome, ring chromosome loss and secondary aberrations were observed both in 48-and 72-h lymphocyte cultures and in metaphase cells of the different cell generations. We found no clear-cut correlation between ring size and ring instability; we also did not find differences between apparently complete rings and rings with genetic material loss. The cytogenetic findings revealed secondary aberrations in all ring chromosome patients. We concluded that cells with ring chromosome instability can multiply and survive in vivo, and that they can influence the patient's phenotype.
Resumo:
Background: Cardiac remodeling is generally an adverse sign and is associated with heart failure (HF) progression. NFkB, an important transcription factor involved in many cell survival pathways, has been implicated in the remodeling process, but its role in the heart is still controversial. Recently, a promoter polymorphism associated with a lesser activation of the NFKB1 gene was also associated with Dilated Cardiomyopathy. The purpose of this study was to evaluate the association of this polymorphism with clinical and functional characteristics of heart failure patients of different etiologies. Methods: A total of 493 patients with HF and 916 individuals from a cohort of individuals from the general population were investigated. The NFKB1-94 insertion/deletion ATTG polymorphism was genotyped by High Resolution Melt discrimination. Allele and genotype frequencies were compared between groups. In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotype groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the polymorphism were compared regarding disease onset and mortality incidence in HF patients. Results: We did not find differences in genotype and allelic frequencies between cases and controls. Interestingly, we found an association between the ATTG(1)/ATTG(1) genotype with right ventricle diameter (P = 0.001), left ventricle diastolic diameter (P = 0.04), and ejection fraction (EF) (P = 0.016), being the genotype ATTG(1)/ATTG(1) more frequent in patients with EF lower than 50% (P = 0.01). Finally, we observed a significantly earlier disease onset in ATTG(1)/ATTG(1) carriers. Conclusion: There is no genotype or allelic association between the studied polymorphism and the occurrence of HF in the tested population. However, our data suggest that a diminished activation of NFKB1, previously associated with the ATTG(1)/ATTG(1) genotype, may act modulating on the onset of disease and, once the individual has HF, the genotype may modulate disease severity by increasing cardiac remodeling and function deterioration.
Resumo:
Background: Spinal muscular atrophy (SMA) is an autosomal recessive disorder that affects the motoneurons of the spinal anterior horn, resulting in hypotonia and muscle weakness. The disease is caused by deletion or mutation in the telomeric copy of SMN gene (SMN1) and clinical severity is in part determined by the copy number of the centromeric copy of the SMN gene (SMN2). The SMN2 mRNA lacks exon 7, resulting in a production of lower amounts of the full-length SMN protein. Knowledge of the molecular mechanism of diseases has led to the discovery of drugs capable of increasing SMN protein level through activation of SMN2 gene. One of these drugs is the valproic acid (VPA), a histone deacetylase inhibitor. Methods: Twenty-two patients with type II and III SMA, aged between 2 and 18 years, were treated with VPA and were evaluated five times during a one-year period using the Manual Muscle Test (Medical Research Council scale-MRC), the Hammersmith Functional Motor Scale (HFMS), and the Barthel Index. Results: After 12 months of therapy, the patients did not gain muscle strength. The group of children with SMA type II presented a significant gain in HFMS scores during the treatment. This improvement was not observed in the group of type III patients. The analysis of the HFMS scores during the treatment period in the groups of patients younger and older than 6 years of age did not show any significant result. There was an improvement of the daily activities at the end of the VPA treatment period. Conclusion: Treatment of SMA patients with VPA may be a potential alternative to alleviate the progression of the disease.
Resumo:
Based on pre-DNA racial/color methodology, clinical and pharmacological trials have traditionally considered the different geographical regions of Brazil as being very heterogeneous. We wished to ascertain how such diversity of regional color categories correlated with ancestry. Using a panel of 40 validated ancestry-informative insertion-deletion DNA polymorphisms we estimated individually the European, African and Amerindian ancestry components of 934 self-categorized White, Brown or Black Brazilians from the four most populous regions of the Country. We unraveled great ancestral diversity between and within the different regions. Especially, color categories in the northern part of Brazil diverged significantly in their ancestry proportions from their counterparts in the southern part of the Country, indicating that diverse regional semantics were being used in the self-classification as White, Brown or Black. To circumvent these regional subjective differences in color perception, we estimated the general ancestry proportions of each of the four regions in a form independent of color considerations. For that, we multiplied the proportions of a given ancestry in a given color category by the official census information about the proportion of that color category in the specific region, to arrive at a ""total ancestry"" estimate. Once such a calculation was performed, there emerged a much higher level of uniformity than previously expected. In all regions studied, the European ancestry was predominant, with proportions ranging from 60.6% in the Northeast to 77.7% in the South. We propose that the immigration of six million Europeans to Brazil in the 19(th) and 20(th) centuries - a phenomenon described and intended as the ""whitening of Brazil"" -is in large part responsible for dissipating previous ancestry dissimilarities that reflected region-specific population histories. These findings, of both clinical and sociological importance for Brazil, should also be relevant to other countries with ancestrally admixed populations.