896 resultados para zirconia abutment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim of the investigation was to assess the effect of different surface treatments on the bond strength of veneering ceramics to zirconia. In a shear test, the influences of polishing, sandblasting, and silica-coating of the zirconia surface on bonding were assessed with five different veneering ceramics. In addition the effect of liner application was examined. With one veneering ceramic, the impact of regeneration firing of zirconia was also evaluated. Statistical analysis was performed with one-way ANOVA and post hoc Scheffé's test. Failure in every case occurred in the veneering ceramic adjacent to the interface with a thin layer of ceramic remaining on the zirconia surface, indicating that bond strength was higher than the cohesive strength of the veneering ceramic. Shear strength ranged from 23.5 +/- 3.4 MPa to 33.0 +/- 6.8 MPa without explicit correlation to the respective surface treatment. Regeneration firing significantly decreased the shear strength of both polished and sandblasted surfaces. Findings of this study revealed that bonding between veneering ceramics and zirconia might be based on chemical bonds. On this note, sandblasting was not a necessary surface pretreatment to enhance bond strength and that regeneration firing was not recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present paper deals with the double crown technique in removable prosthodontics. New ceramic materials like zirconia are increasingly used in combination with CAD/CAM technologies for framework fabrication of fixed prosthesis, tooth- or implant-supported. However, zirconia is also a newly accepted material in removable prosthodontics. It replaces gold alloys for the fabrication of primary telescopic crowns. The Galvanoforming technology is preferably used to fabricate the secondary crowns. The combination of both techniques and materials results in a prosthetic reconstruction of high quality, optimum fit and good biocompatibility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: One way to evaluate various implant restorations is to measure the amount of bone change that occurs at the crestal bone. The objective of this study was to histologically evaluate the alveolar bone change around a bone-level, non-matching implant-abutment diameter configuration that incorporated a horizontal offset and a Morse taper internal connection. METHODS: The study design included extraction of all mandibular premolars and first molars in five canines. After 3 months, 12 dental implants were placed at three levels in each dog: even with the alveolar crest, 1 mm above the alveolar crest, and 1 mm below the alveolar crest. The implants were submerged on one side of the mandible. On the other side, healing abutments were exposed to the oral cavity (non-submerged). Gold crowns were attached 2 months after implant placement. The dogs were sacrificed 6 months postloading, and specimens were processed for histologic and histometric analyses. RESULTS: Evaluation of the specimens indicated that the marginal bone remained near the top of the implants under submerged and non-submerged conditions. The amount of bone change for submerged implants placed even with, 1 mm below, and 1 mm above the alveolar crest was -0.34, -1.29, and 0.04 mm, respectively (negative values indicate bone loss). For non-submerged implants, the respective values were -0.38, -1.13, and 0.19 mm. For submerged and non-submerged implants, there were significant differences in the amount of bone change among the three groups (P <0.05). The percentage of bone-to-implant contact for submerged implants was 73.3%, 71.8%, and 71.5%. For non-submerged implants, the respective numbers were 73.2%, 74.5%, and 76%. No significant differences occurred with regard to the percentage of bone contact. CONCLUSIONS: Minimal histologic bone loss occurred when dental implants with non-matching implant-abutment diameters were placed at the bone crest and were loaded for 6 months in the canine. The bone loss was significantly less (five- to six-fold) than that reported for bone-level implants with matching implant-abutment diameters (butt-joint connections).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical aspects of reconstruction with fix prosthesis and dental implants in a patient with a history of periodontitis is shown. A successful stabilization and rehabilitation of the periodontally involved dentition can be achieved with tooth-worn crown and bridge reconstructions. From a functional and aesthetic point of view the result may not be satisfying due to mobility and overlength of the teeth and open approximal spaces. Today, dentist and patient have often to weigh if teeth shall be maintained or replaced by dental implants. Thereby, both must be aware of the fact that in complex cases long-term success and aesthetic outcome may be difficult to predict. An intense discussion with the patient on his expectations, invasive treatment, risks with regard to biologic and prosthetic aspects is mandatory and must be based on the best scientific evidence available. The present case report shows different considerations and describes a radical solution which meets the patient's needs and is based on modern CAD-CAM technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES The aim was to study the impact of the defect size of endodontically treated incisors compared to dental implants as abutments on the survival of zirconia two-unit anterior cantilever-fixed partial dentures (2U-FPDs) during 10-year simulation. MATERIALS AND METHODS Human maxillary central incisors were endodontically treated and divided into three groups (n = 24): I, access cavities rebuilt with composite core; II, teeth decoronated and restored with composite; and III as II supported by fiber posts. In group IV, implants with individual zirconia abutments were used. Specimens were restored with zirconia 2U-FPDs and exposed to two sequences of thermal cycling and mechanical loading. Statistics: Kaplan-Meier; log-rank tests. RESULTS During TCML in group I two tooth fractures and two debondings with chipping were found. Solely chippings occurred in groups II (2×), IV (2×), and III (1×). No significant different survival was found for the different abutments (p = 0.085) or FPDs (p = 0.526). Load capability differed significantly between groups I (176 N) and III (670 N), and III and IV (324 N) (p < 0.024). CONCLUSION Within the limitations of an in vitro study, it can be concluded that zirconia-framework 2U-FPDs on decoronated teeth with/without post showed comparable in vitro reliability as restorations on implants. The results indicated that restorations on teeth with only access cavity perform worse in survival and linear loading. CLINICAL RELEVANCE Even severe defects do not justify per se a replacement of this particular tooth by a dental implant from load capability point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Zirconia (ZrO2 ) has received interest as a dental material; however, little information is available on the impact of surface modifications on the osseointegration of zirconia implants. PURPOSE: The aim of the present study was to determine the effect of acid or alkaline etching of sandblasted ZrO2 implants on bone apposition in vivo. METHODS: Cylindrical ZrO2 implants with two circumferential grooves were placed in the maxilla of 12 miniature pigs. Biopsies were harvested after 1, 2, 4, and 8 weeks of healing. Undecalcified toluidine blue-stained ground sections were produced. The bone-to-implant contact, the bone area, and the presence of multinucleated giant cells were determined by histomorphometry. An uncorrected explorative statistical analysis was performed. RESULTS: Acid etching but not alkaline etching of sandblasted ZrO2 implants caused more bone-to-implant contact than sandblasted ZrO2 implants. The bone area was unaffected by the surface modifications. Acid and alkaline etching both increased the formation of multinucleated giant cells at the implant surface. CONCLUSIONS: This study provides a scientific basis to further investigate the impact of acid etching of sandblasted ZrO2 implants on osseointegration and the role of multinucleated giant cells in this process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE The cost-effectiveness of cast nonprecious frameworks has increased their prevalence in cemented implant crowns. The purpose of this study was to assess the effect of the design and height of the retentive component of a standard titanium implant abutment on the fit, possible horizontal rotation and retention forces of cast nonprecious alloy crowns prior to cementation. MATERIALS AND METHODS Two abutment designs were examined: Type A with a 6° taper and 8 antirotation planes (Straumann Tissue-Level RN) and Type B with a 7.5° taper and 1 antirotation plane (SICace implant). Both types were analyzed using 60 crowns: 20 with a full abutment height (6 mm), 20 with a medium abutment height (4 mm), and 20 with a minimal (2.5 mm) abutment height. The marginal and internal fit and the degree of possible rotation were evaluated by using polyvinylsiloxane impressions under a light microscope (magnification of ×50). To measure the retention force, a custom force-measuring device was employed. STATISTICAL ANALYSIS one-sided Wilcoxon rank-sum tests with Bonferroni-Holm corrections, Fisher's exact tests, and Spearman's rank correlation coefficient. RESULTS Type A exhibited increased marginal gaps (primary end-point: 55 ± 20 μm vs. 138 ± 59 μm, P < 0.001) but less rotation (P < 0.001) than Type B. The internal fit was also better for Type A than for Type B (P < 0.001). The retention force of Type A (2.49 ± 3.2 N) was higher (P = 0.019) than that of Type B (1.27 ± 0.84 N). Reduction in abutment height did not affect the variables observed. CONCLUSION Less-tapered abutments with more antirotation planes provide an increase in the retention force, which confines the horizontal rotation but widens the marginal gaps of the crowns. Thus, casting of nonprecious crowns with Type A abutments may result in clinically unfavorable marginal gaps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To evaluate technical complications and failures of zirconia-based fixed prostheses supported by implants. MATERIALS AND METHODS Consecutive patients received zirconia-based single crowns (SCs) and fixed dental prostheses (FDPs) on implants in a private clinical setting between 2005 and 2010. One dentist performed all surgical and prosthetic procedures, and one master technician performed and coordinated all laboratory procedures. One-piece computer-aided design/ computer-assisted manufacture technology was used to fabricate abutments and frameworks, which were directly connected at the implant level, where possible. All patients were involved in a recall maintenance program and were finally reviewed in 2012. Data on framework fractures, chipping of veneering ceramics, and other technical complications were recorded. The primary endpoint was failure of the prostheses, ie, the need for a complete remake. A life table analysis was calculated. RESULTS A total of 289 implants supported 193 zirconia-based prostheses (120 SCs and 73 FDPs) in 127 patients (51 men, 76 women; average age: 62.5 ± 13.4 years) who were reviewed in 2012. Twenty-five (13%) prostheses were cemented on 44 zirconia abutments and 168 (87%) prostheses were screw-retained directly at the implant level. Fracture of 3 frameworks (1 SC, 2 FDPs) was recorded, and significant chipping resulted in the remake of 3 prostheses (1 SC, 2 FDPs). The 7-year cumulative survival rate was 96.4% ± 1.99%. Minor complications comprised 5 loose screws (these were retightened), small chips associated with 3 prostheses (these were polished), and dislodgement of 3 prostheses (these were recemented). Overall, 176 prostheses remained free of technical problems. CONCLUSIONS Zirconia-based prostheses screwed directly to implants are clinically successful in the short and medium term.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To determine the impact of long-term storage on adhesion between titanium and zirconia using resin cements. MATERIALS AND METHODS Titanium grade 4 blocks were adhesively fixed onto zirconia disks with four resin cements: Panavia F 2.0 (Kuraray Europe), GC G-Cem (GC Europe), RelyX Unicem (3M ESPE), and SmartCem 2 (Dentsply DeguDent). Shear bond strength was determined after storage in a water bath for 24 h, 16, 90, and 150 days at 37°C, and after 6000 cycles between 5°C and 55°C. Fracture behavior was evaluated using scanning electron microscopy. RESULTS After storage for at least 90 days and after thermocycling, GC G-Cem (16.9 MPa and 15.1 MPa, respectively) and RelyX Unicem (10.8 MPa and 15.7 MPa, respectively) achieved higher shear bond strength compared to SmartCem 2 (7.1 MPa and 4.0 MPa, respectively) and Panavia F2 (4.1 MPa and 7.4 MPa, respectively). At day 150, GC G-Cem and RelyX Unicem caused exclusively mixed fractures. SmartCem 2 and Panavia F2 showed adhesive fractures in one-third of the cases; all other fractures were of mixed type. After 24 h (GC G-Cem: 26.0, RelyX Unicem: 20.5 MPa, SmartCem 2: 16.1 MPa, Panavia F2: 23.6 MPa) and 16 days (GC G-Cem: 12.8, RelyX Unicem: 14.2 MPa, SmartCem 2: 9.8 MPa, Panavia F2: 14.7 MPa) of storage, shear bond strength was similar among the four cements. CONCLUSION Long-term storage and thermocycling differentially affects the bonding of resin cement between titanium and zirconia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To assess the 5-year survival of metal-ceramic and all-ceramic tooth-supported fixed dental prostheses (FDPs) and to describe the incidence of biological, technical and esthetic complications. METHODS Medline (PubMed), Embase and Cochrane Central Register of Controlled Trials (CENTRAL) searches (2006-2013) were performed for clinical studies focusing on tooth-supported FDPs with a mean follow-up of at least 3 years. This was complemented by an additional hand search and the inclusion of 10 studies from a previous systematic review [1]. Survival and complication rates were analyzed using robust Poisson's regression models to obtain summary estimates of 5-year proportions. RESULTS Forty studies reporting on 1796 metal-ceramic and 1110 all-ceramic FDPs fulfilled the inclusion criteria. Meta-analysis of the included studies indicated an estimated 5-year survival rate of metal-ceramic FDPs of 94.4% (95% CI: 91.2-96.5%). The estimated survival rate of reinforced glass ceramic FDPs was 89.1% (95% CI: 80.4-94.0%), the survival rate of glass-infiltrated alumina FDPs was 86.2% (95% CI: 69.3-94.2%) and the survival rate of densely sintered zirconia FDPs was 90.4% (95% CI: 84.8-94.0%) in 5 years of function. Even though the survival rate of all-ceramic FDPs was lower than for metal-ceramic FDPs, the differences did not reach statistical significance except for the glass-infiltrated alumina FDPs (p=0.05). A significantly higher incidence of caries in abutment teeth was observed for densely sintered zirconia FDPs compared to metal-ceramic FDPs. Significantly more framework fractures were reported for reinforced glass ceramic FDPs (8.0%) and glass-infiltrated alumina FDPs (12.9%) compared to metal-ceramic FDPs (0.6%) and densely sintered zirconia FDPs (1.9%) in 5 years in function. However, the incidence of ceramic fractures and loss of retention was significantly (p=0.018 and 0.028 respectively) higher for densely sintered zirconia FDPs compared to all other types of FDPs. CONCLUSIONS Survival rates of all types of all-ceramic FDPs were lower than those reported for metal-ceramic FDPs. The incidence of framework fractures was significantly higher for reinforced glass ceramic FDPs and infiltrated glass ceramic FDPs, and the incidence for ceramic fractures and loss of retention was significantly higher for densely sintered zirconia FDPs compared to metal-ceramic FDPs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES To objectively determine the difference in colour between the peri-implant soft tissue at titanium and zirconia abutments. MATERIALS AND METHODS Eleven patients, each with two contralaterally inserted osteointegrated dental implants, were included in this study. The implants were restored either with titanium abutments and porcelain-fused-to-metal crowns, or with zirconia abutments and ceramic crowns. Prior and after crown cementation, multi-spectral images of the peri-implant soft tissues and the gingiva of the neighbouring teeth were taken with a colorimeter. The colour parameters L*, a*, b*, c* and the colour differences ΔE were calculated. Descriptive statistics, including non-parametric tests and correlation coefficients, were used for statistical analyses of the data. RESULTS Compared to the gingiva of the neighbouring teeth, the peri-implant soft tissue around titanium and zirconia (test group), showed distinguishable ΔE both before and after crown cementation. Colour differences around titanium were statistically significant different (P = 0.01) only at 1 mm prior to crown cementation compared to zirconia. Compared to the gingiva of the neighbouring teeth, statistically significant (P < 0.01) differences were found for all colour parameter, either before or after crown cementation for both abutments; more significant differences were registered for titanium abutments. Tissue thickness correlated positively with c*-values for titanium at 1 mm and 2 mm from the gingival margin. CONCLUSIONS Within their limits, the present data indicate that: (i) The peri-implant soft tissue around titanium and zirconia showed colour differences when compared to the soft tissue around natural teeth, and (ii) the peri-implant soft tissue around zirconia demonstrated a better colour match to the soft tissue at natural teeth than titanium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE To compare time-efficiency in the production of implant crowns using a digital workflow versus the conventional pathway. MATERIALS AND METHODS This prospective clinical study used a crossover design that included 20 study participants receiving single-tooth replacements in posterior sites. Each patient received a customized titanium abutment plus a computer-aided design/computer-assisted manufacture (CAD/CAM) zirconia suprastructure (for those in the test group, using digital workflow) and a standardized titanium abutment plus a porcelain-fused-to-metal crown (for those in the control group, using a conventional pathway). The start of the implant prosthetic treatment was established as the baseline. Time-efficiency analysis was defined as the primary outcome, and was measured for every single clinical and laboratory work step in minutes. Statistical analysis was calculated with the Wilcoxon rank sum test. RESULTS All crowns could be provided within two clinical appointments, independent of the manufacturing process. The mean total production time, as the sum of clinical plus laboratory work steps, was significantly different. The mean ± standard deviation (SD) time was 185.4 ± 17.9 minutes for the digital workflow process and 223.0 ± 26.2 minutes for the conventional pathway (P = .0001). Therefore, digital processing for overall treatment was 16% faster. Detailed analysis for the clinical treatment revealed a significantly reduced mean ± SD chair time of 27.3 ± 3.4 minutes for the test group compared with 33.2 ± 4.9 minutes for the control group (P = .0001). Similar results were found for the mean laboratory work time, with a significant decrease of 158.1 ± 17.2 minutes for the test group vs 189.8 ± 25.3 minutes for the control group (P = .0001). CONCLUSION Only a few studies have investigated efficiency parameters of digital workflows compared with conventional pathways in implant dental medicine. This investigation shows that the digital workflow seems to be more time-efficient than the established conventional production pathway for fixed implant-supported crowns. Both clinical chair time and laboratory manufacturing steps could be effectively shortened with the digital process of intraoral scanning plus CAD/CAM technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Recent technical development allows the digital manufacturing of monolithic reconstructions with high-performance materials. For implant-supported crowns, the fixation requires an abutment design onto which the reconstruction can be bonded. PURPOSE The aim of this laboratory investigation was to analyze stiffness, strength, and failure modes of implant-supported, computer-assisted design and computer-aided manufacturing (CAD/CAM)-generated resin nano ceramic (RNC) crowns bonded to three different titanium abutments. MATERIALS AND METHODS Eighteen monolithic RNC crowns were produced and loaded in a universal testing machine under quasi-static condition according to DIN ISO 14801. With regard to the type of titanium abutment, three groups were defined: (1) prefabricated cementable standard; (2) CAD/CAM-constructed individualized; and (3) novel prefabricated bonding base. Stiffness and strength were measured and analyzed statistically with Wilcoxon rank sum test. Sections of the specimens were examined microscopically. RESULTS Stiffness demonstrated high stability for all specimens loaded in the physiological loading range with means and standard deviations of 1,579 ± 120 N/mm (group A), 1,733 ± 89 N/mm (group B), and 1,704 ± 162 N/mm (group C). Mean strength of the novel prefabricated bonding base (group C) was 17% lower than of the two other groups. Plastic deformations were detectable for all implant-abutment crown connections. CONCLUSIONS Monolithic implant crowns made of RNC seem to represent a feasible and stable prosthetic construction under laboratory testing conditions with strength higher than the average occlusal force, independent of the different abutment designs used in this investigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Little information is yet available on zirconia-based prostheses supported by implants. PURPOSE To evaluate technical problems and failures of implant-supported zirconia-based prostheses with exclusive screw-retention. MATERIAL AND METHODS Consecutive patients received screw-retained zirconia-based prostheses supported by implants and were followed over a time period of 5 years. The implant placement and prosthetic rehabilitation were performed in one clinical setting, and all patients participated in the maintenance program. The treatment comprised single crowns (SCs) and fixed dental prostheses (FDPs) of three to 12 units. Screw-retention of the CAD/CAM-fabricated SCs and FDPs was performed with direct connection at the implant level. The primary outcome was the complete failure of zirconia-based prostheses; outcome measures were fracture of the framework or extensive chipping resulting in the need for refabrication. A life table analysis was performed, the cumulative survival rate (CSR) calculated, and a Kaplan-Meier curve drawn. RESULTS Two hundred and ninety-four implants supported 156 zirconia-based prostheses in 95 patients (52 men, 43 women, average age 59.1 ± 11.7 years). Sixty-five SCs and 91 FDPs were identified, comprising a total of 441 units. Fractures of the zirconia framework and extensive chipping resulted in refabrication of nine prostheses. Nearly all the prostheses (94.2%) remained in situ during the observation period. The 5-year CSR was 90.5%, and 41 prostheses (14 SCs, 27 FDPs) comprising 113 units survived for an observation time of more than 5 years. Six SCs exhibited screw loosening, and polishing of minor chipping was required for five prostheses. CONCLUSIONS This study shows that zirconia-based implant-supported fixed prostheses exhibit satisfactory treatment outcomes and that screw-retention directly at the implant level is feasible.