981 resultados para multiple quantum well
Resumo:
The dielectric response of a modulated three-dimensional electron system composed of a periodic array of quantum wells with weak coupling and strong coupling are studied, and the dispersions of the collective excitations and the single particle excitations as functions of wave vectors are given. It is found that for the nearly isolated multiple-quantum-well case with several subbands occupation, there is a three-dimensional-like plasmon when q(z)=0 (q(z) is the wave-vector component in the superlattice axis). There also exist intersubband collective excitations in addition to one intra-subband mode when q(z) not equal 0. The intra-subband mode has a linear dispersion relation with q(//) (the wave-vector component perpendicular to the superlattice axis) when q(//) is small. The inter-subband modes cover wider ranges in q(//) with increasing values of q(z). The energies of inter-subband collective excitations are close by the corresponding inter-subband single-particle excitation spectra. The collective excitation dispersions show obvious anisotropy in the 2D quantum limit. The calculated results agree with the experiment. The coupling between quantum wells affects markedly both the collective excitations and the single particle excitations spectra. The system shows gradually a near-three-dimensional electron gas character with increasing coupling. Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
The EER spectra of a single quantum well GaAs\AlxGa1-xAs electrode were studied as a function of applied reverse bias in ferrocene, p-methyl nitrobenzene and hydroquinone+benzoquinone non-aqueous solutions. EER spectra were compared for different redox species and showed that a pronounced quantum-confined Stark effect and a Franz-Keldysh oscillation for a single quantum well electrode were obtained in the p-methyl-nitrobenzene- and hydroquinone+benzoquinone-containing solutions. A surface interaction of the single quantum well electrode with ferrocene led to fewer changes in the electric field of the space charge layer for reverse bias; this was suggested to explain the weak quantum-confined Stark effect and Franz-Keldysh oscillation effect observed for the single quantum well electrode in the ferrocene-containing solution. (C) 1997 Elsevier Science S.A.
Resumo:
The magnetophonon resonance effect in the energy relaxation rate is studied theoretically for a quasi-two-dimensional electron gas in a semiconductor quantum well. An electron-temperature model is adopted to describe the coupled electron-phonon system. The energy relaxation time, derived from the energy relaxation rate, is found to display an oscillatory behavior as the magnetic-field strength changes, and reaches minima when the optical phonon frequency equals integer multiples of the electron cyclotron frequency. The theoretical results are compared with a recent experiment, and a qualitative agreement is found.
Resumo:
By considering all possible high order diffracted waves, the authors investigate the spectral response of two-dimensional gratings for quantum well infrared photodetectors (QWIPs). A new method is proposed that using long period gratings may improve grating quality and reduce the resulting cross talk in grating-coupled QWIPs. A sensitivity analysis indicates that the influence of variation of the grating constant on the coupling efficiency is less sensitive for the long period gratings than for the short ones. A large coupling efficiency has been demonstrated for long period gratings. The calculated wide grating response spectra are in good agreement with the experiment result. (C) 1996 American Institute of Physics.
Resumo:
We have measured low-temperature photoluminescence (PL) and absorption spectra of In0.2Ga0.8As/GaAs multiple quantum wells (MQW's) under hydrostatic pressures up to 8 GPa. In PL, only a single peak is observed below 4.9 GPa corresponding to the n = 1 heavy-hole (HH) exciton in the InxGa1-xAs wells. Above 4.9 GPa, new PL lines related to X-like conduction band states appear. They are assigned to the type-II transition from the X(Z) states in GaAs to the HH subband of the InxGa1-xAs wells and to the zero-phonon line and LO-phonon replica of the type-I transition involving the X(XY) valleys of the wells. In addition to absorption peaks corresponding to direct exciton transitions in the wells, a new strong absorption feature is apparent in spectra for pressures between 4.5 and 5.5 GPa. This absorption is attributed to the pseudodirect transition between the HH subband and the X, state of the wells. This gives clear evidence for an enhanced strength of indirect optical transitions due to the breakdown of translational invariance in MQW structures. From experimental level splittings we determine the valence band offset and the shear deformation potential for X states in the In0.2Ga0.8As layer.
Resumo:
The magnetotransport properties of the two-dimensional (2D) electron gas confined in a modulation-doped Zn0.80Cd0.20Se/ZnS0.06Se0.94 single quantum well structure were studied at temperatures down to 0.35 K in magnetic fields up to 7.5 T. Well resolved 2D Shubnikovde Haas (SdH) oscillations were observed, although the conductivity of the sample in the as grown state was dominated by a bulk parallel conduction layer. After removing most of the parallel conduction layer by wet chemical etching the amplitude and number of SdH oscillations increased. From the temperature dependence of the amplitude the effective mass of the electrons was estimated as 0.17 m(0). Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
Photo-luminescence and electro-luminescence from step-graded index SiGe/Si quantum well grown by molecular beam epitaxy is reported. The SiGe/Si step-graded index quantum well structure is beneficial to the enhancing of electro-luminescence. The optical and electrical properties of this structure are discussed.
Resumo:
The interfacial behavior of the single quantum well (SQW) GaAs/AlxGa1-xAs electrode in HQ/BQ and Fc/Fc(+) electrolytes was characterized respectively by studying the quantum confined Stark effect and Franz-Keldysh oscillation with electrolyte electroreflectance spectroscopy. The interaction of the surface state of the SQW electrode with redox species and its effects on the distribution of external bias at the interface of the SQW electrode are discussed.
Resumo:
Ga(+)ion implantation followed by rapid thermal annealing (RTA) was used to enhance the interdiffusion in GaAs/AlGaAs single Quantum Wells(SQWs). The extent of intermixing was found to be dependent on the well depth, number of implanted ions and annealing time. A very fast interdiffusion process occurs at the initial annealing stage. After that, the enhanced diffusion coefficient goes back to the umimplanted value. We propose a two-step model to explain the diffusion process as a function of the annealing time : a fast diffusion process and a saturated diffusion process. The interdiffusion coefficient of the fast diffusion was found to be of well depth dependence and estimated to be in the range of 5.4x10(-16) similar to 1.5x10(-15)cm(2)s(-1). Copyright (C) 1996 Published by Elsevier Science Ltd
Resumo:
By considering all possible high order diffracted waves, the authors calculate the coupling efficiency of long period gratings for 3-5 mu m quantum-well infra-red photodetectors (QWIPs) on the basis of the modal expansion model (MEM). A large coupling efficiency for 3-5 mu m QWIPs has been demonstrated. This greatly reduces the difficulties in fabricating 3-5 mu m grating coupled QWIPs and opens the way to fabricate high performance 3-5 mu m and two colour QWIPs image arrays.
Resumo:
Ultrathin single quantum well (about one monolayer) grown on GaAs(001) substrate with GaAs cap layer has been studied by high resolution x-ray diffractometer on a beamline of the Beijing Synchrotron Radiation Facility. The interference fringes on both sides of the GaAs(004) Bragg peak are asymmetric and a range of weak fringes in the higher angle side of the Bragg peak is observed. The simulated results by using the kinematical diffraction method shows that the weak fringe range appears in the higher angle side when the phase shift introduced by the single quantum well is very slightly smaller than m pi (m:integer), and vice versa. After introducing a reasonable model of single quantum well, the simulated pattern is in good agreement with the experiment. (C) 1996 American Institute of Physics.
Resumo:
Based on the valence subbands of the zinc-blende GaN/Ga0.85Al0.15N strained quantum wells obtained by a 6x6 Hamiltonian (including heavy hole, light hole and spin-orbit splitting band), optical gain and radiative current density are calculated for the strained quantum well laser structures. The compressive strain in the GaN well region strongly depresses the TM mode optical gain and enhances the TE mode optical gain.
Resumo:
Using deep level transient spectroscopy (DLTS) the X conduction-subband energy levels in an AlAs well sandwiched by double GaAs layers were determined. Calculation gives eight subbands in the well with well width of 50 Angstrom. Among them, five levels and the other three remainders are determined by using the large longitudinal electron effective mass m(1)(1.1m(0)) and transverse electron effective mass m(t)(0.19m(0)) at X valley, respectively. Two subbands with the height energies were hardly detectable and the other six ones with lower energies are active in the present DLTS study. Because these six subbands are close to each other, we divided them into three groups. Experimentally, we observed three signals induced from the three groups. A good agreement between the calculation and experiment was obtained. (C) 1995 American Institute of Physics.
Resumo:
The dynamic effect of electrons in a double quantum well under the influence of a monochromatic driving laser field is investigated. Closed-form solutions for the quasienergy and Floquet states are obtained with the help of SU(2) symmetry. For the case of weak interlevel coupling, explicit expressions of the quasienergy are presented by the use of perturbation theory, from which it is found that as long as the photon energy is not close to the tunnel splitting, the electron will be confined in an initially occupied eigenstate of the undriven system during the whole evolution process. Otherwise, it will transit between the lowest two levels in an oscillatory behavior.