992 resultados para metabolic reactive intermediates
Resumo:
Filipe et al. (2001) proposed an anaerobic metabolic model for glycogen-accumulating organisms (GAO) in which the succinate-propionate pathway was used to describe the production of propionyl-CoA. However, propionyl-CoA is only an intermediate product in the above pathway. Stopping at propionyl-CoA instead of propionate (the end product of the pathway) results in the consumption of one ATP from succinate to succinyl-CoA, which was not accounted for in the model of Filipe et al. (2001). This resulted in significant errors in the stoichiometric coefficients in the final metabolic model. A modified model is presented in this communication and is shown to fit the experimental data significantly better than the original model. (C) 2002 Wiley Periodicals, Inc.
Resumo:
Prolonged muscle disuse in vertebrates can lead to a pathological change resulting in muscle wasting and a loss of muscle strength. In this paper, we review muscle disuse atrophy in the vertebrates and examine the factors that influence the magnitude of the atrophic response during extended periods of inactivity, both artificially imposed (e.g. limb immobilisation) and naturally occurring, such as the quiescence associated with dormancy (e.g. hibernation and aestivation). The severity of muscle atrophy is positively correlated with mass-specific metabolic rate, and the metabolic depression that occurs during dormancy would appear to have a protective role, reducing or preventing muscle atrophy despite periods of inactivity lasting 6-9 months. In the light of these findings, the role of reactive oxygen species and antioxidants during muscle disuse is emphasised.
Resumo:
In this paper. we present the results of quantum dynamical simulations of the S (D-1) + H-2 insertion reaction on a newly developed potential energy surface (J. Chem. Phys. 2001, 114, 320). State-to-state reaction probabilities. product state distributions, and initial-state resolved cumulative reaction probabilities from a given incoming reactant channel are obtained from a time-independent wave packet analysis, performed within a single Lanczos subspace. Integral reaction cross sections are then estimated by J-shifting method and compared with the results from molecular beam experiment and QCT calculations.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
A new modeling approach-multiple mapping conditioning (MMC)-is introduced to treat mixing and reaction in turbulent flows. The model combines the advantages of the probability density function and the conditional moment closure methods and is based on a certain generalization of the mapping closure concept. An equivalent stochastic formulation of the MMC model is given. The validity of the closuring hypothesis of the model is demonstrated by a comparison with direct numerical simulation results for the three-stream mixing problem. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a second linearly scalable method for solving large master equations arising in the context of gas-phase reactive systems. The new method is based on the well-known shift-invert Lanczos iteration using the GMRES iteration preconditioned using the diffusion approximation to the master equation to provide the inverse of the master equation matrix. In this way we avoid the cubic scaling of traditional master equation solution methods while maintaining the speed of a partial spectral decomposition. The method is tested using a master equation modeling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long-lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
In this paper we propose a novel fast and linearly scalable method for solving master equations arising in the context of gas-phase reactive systems, based on an existent stiff ordinary differential equation integrator. The required solution of a linear system involving the Jacobian matrix is achieved using the GMRES iteration preconditioned using the diffusion approximation to the master equation. In this way we avoid the cubic scaling of traditional master equation solution methods and maintain the low temperature robustness of numerical integration. The method is tested using a master equation modelling the formation of propargyl from the reaction of singlet methylene with acetylene, proceeding through long lived isomerizing intermediates. (C) 2003 American Institute of Physics.
Resumo:
Enzymic catalysis proceeds via intermediates formed in the course of substrate conversion. Here, we directly detect key intermediates in thiamin diphosphate (ThDP)-dependent enzymes during catalysis using H-1 NMR spectroscopy. The quantitative analysis of the relative intermediate concentrations allows the determination of the microscopic rate constants of individual catalytic steps. As demonstrated for pyruvate decarboxylase (PDC), this method, in combination with site-directed mutagenesis, enables the assignment of individual side chains to single steps in catalysis. In PDC, two independent proton relay systems and the stereochemical control of the enzymic environment account for proficient catalysis proceeding via intermediates at carbon 2 of the enzyme-bound cofactor. The application of this method to other ThDP-dependent enzymes provides insight into their specific chemical pathways.
Resumo:
Glycogen-accumulating organisms (GAO) have the potential to directly compete with polyphosphate-accumulating organisms (PAO) in EBPR systems as both are able to take up VFA anaerobically and grow on the intracellular storage products aerobically. Under anaerobic conditions GAO hydrolyse glycogen to gain energy and reducing equivalents to take up VFA and to synthesise polyhydroxyalkanoate (PHA). In the subsequent aerobic stage, PHA is being oxidised to gain energy for glycogen replenishment (from PHA) and for cell growth. This article describes a complete anaerobic and aerobic model for GAO based on the understanding of their metabolic pathways. The anaerobic model has been developed and reported previously, while the aerobic metabolic model was developed in this study. It is based on the assumption that acetyl-CoA and propionyl-CoA go through the catabolic and anabolic processes independently. Experimental validation shows that the integrated model can predict the anaerobic and aerobic results very well. It was found in this study that at pH 7 the maximum acetate uptake rate of GAO was slower than that reported for PAO in the anaerobic stage. On the other hand, the net biomass production per C-mol acetate added is about 9% higher for GAO than for PAO. This would indicate that PAO and GAO each have certain competitive advantages during different parts of the anaerobic/aerobic process cycle. (C) 2002 Wiley Periodicals, Inc.
Resumo:
This investigation aimed to elucidate the relative roles of putative brevetoxins, reactive oxygen species and free fatty acids as the toxic principle of the raphidophyte Chattonella marina, using damselfish as the bioassay. Our investigations on Australian C. marina demonstrated an absence or only very low concentrations of brevetoxin-like compounds by radio-receptor binding assay and liquid chromatography-mass spectroscopy techniques. Chattonella is unique in its ability to produce levels of reactive oxygen species 100 times higher than most other algal species. However, high levels of superoxide on their own were found not to cause fish mortalities. Lipid analysis revealed this raphidophyte to contain high concentrations of the polyunsaturated fatty acid eicosapentaenoic acid (EPA; 18-23% of fatty acids), which has demonstrated toxic properties to marine organisms. Using damselfish as a model organism, we demonstrated that the free fatty acid (FFA) form of EPA produced a mortality and fish behavioural response similar to fish exposed to C. marina cells. This effect was not apparent when fish were exposed to other lipid fractions including a triglyceride containing fish oil, docosahexaenoate-enriched ethyl ester, or pure brevetoxin standards. The presence of superoxide together with low concentrations of EPA accelerated fish mortality rate threefold. We conclude that the enhancement of ichthyotoxicity of EPA in the presence of superoxide can account for the high C. marina fish killing potential. (C) 2003 Elsevier B.V All rights reserved.
Resumo:
[GRAPHICS] Rapid access to the ABCE ring system of the C-20 diterpene alkaloids was achieved by silver(I)-promoted intramolecular Friedel-Crafts arylation of a functional group-specific 5-bromo-3-azabicyclo[3.3.1]nonane derivative.
Resumo:
This work discusses the use of optical flow to generate the sensorial information a mobile robot needs to react to the presence of obstacles when navigating in a non-structured environment. A sensing system based on optical flow and time-to-collision calculation is here proposed and experimented, which accomplishes two important paradigms. The first one is that all computations are performed onboard the robot, in spite of the limited computational capability available. The second one is that the algorithms for optical flow and time-to-collision calculations are fast enough to give the mobile robot the capability of reacting to any environmental change in real-time. Results of real experiments in which the sensing system here proposed is used as the only source of sensorial data to guide a mobile robot to avoid obstacles while wandering around are presented, and the analysis of such results allows validating the proposed sensing system.
Resumo:
O excesso de gordura corporal induz a um quadro inflamatório associado à endotoxemia metabólica e aumento da resistência à insulina, bem como altera o perfil lipídico que resulta em prejuízos a função hepática e renal. Estudos sugerem que a ingestão de alimentos antioxidantes, como os polifenóis, proporcionam efeitos benéficos sobre os metabolismos glicídico e lipídico. O objetivo deste estudo foi investigar o efeito da casca de jabuticaba (Myrciaria cauliflora), da polpa do açaí juçara (Euterpe edulis Martius) e do jambolão (Syzygium cumini) sobre o perfil lipídico, a glicemia e a endotoxemia em camundongos Swiss submetidos à dieta de cafeteria. Inicialmente, os frutos foram liofilizados e submetidos à avaliação da composição centesimal. O ensaio biológico contou com 50 camundongos machos adultos da raça Swiss distribuídos em 5 grupos (n=10/grupo), a saber: grupo tratado com dieta comercial padrão (controle negativo), grupo tratado com dieta de cafeteria (controle positivo) e grupos teste que receberam por 14 semanas a dieta de cafeteria suplementada com 2% de casca de jabuticaba, ou polpa do jambolão ou polpa do açaí juçara liofilizados. Na 13ª e 14ª semana foram determinadas a tolerância à insulina e à glicose dos animais. Ao final do período experimental, avaliaram-se o ganho de peso, os parâmetros bioquímicos sanguíneos, histopatológicos e endotoxemia. Os parâmetros bioquímicos avaliados foram: colesterol total (CT) e as frações HDL-c, LDL-c, triacilgliceróis (TAG), bem como proteína C reativa (PCR), aspartato aminotransferase (AST) e alanina aminotransferase (ALT). Na histopatologia foram avaliados os efeitos da dieta hipercalórica sobre a área dos adipócitos, esteatose hepática e função renal a partir do número e área dos glomérulos. A endotoxemia foi avaliada pela concentração de lipopolissacarídeos (LPS) no soro dos animais. Aplicou-se o teste t para comparação dos resultados entre os grupos controle e ANOVA, complementada com teste de Tukey (α=5%), para comparação dos grupos suplementados com os frutos e o controle positivo. A suplementação com 2% de jambolão à dieta de cafeteria resultou em redução significativa (p<0,05) do conteúdo de CT, LDL-c, TAG, da razão CT/HDL, bem como diminuição da área dos adipócitos dos animais tratados com os frutos. A suplementação com açaí juçara também foi capaz de reduzir o conteúdo de CT, TAG e a área dos adipócitos, além de elevar a tolerância à glicose. Por outro lado, a jabuticaba não foi eficaz na melhoria dos parâmetros relacionados ao metabolismo lipídico, ao metabolismo da glicose e dos aspectos histopatológicos. A suplementação com 2% dos frutos liofilizados não promoveu efeitos positivos na redução do ganho de peso, resistência à insulina e endotoxemia provocada pela ingestão da dieta de cafeteria. Além disso, os frutos também não foram eficientes na preservação da histologia renal e infiltração lipídica no fígado. Conclui-se que a inclusão do jambolão e do açaí juçara na dieta pode apresentar efeitos positivos sobre danos causados por dietas hiperlipídicas, especialmente no que se refere à dislipidemia, à tolerância à glicose e à hipertrofia dos adipócitos.
Resumo:
Brazil's security agenda during Lula's administration was not homogeneous through the two mandates: the first tenure (2002-2006) revealed a reactive approach towards security topics, while the second one (2006-2010) was more assertive. More specifically, the shift occurred in terms of both its geographical scope - once it incorporated global issues in a more systematic way -, and instruments through which the security agenda was exercised, given the multilateral initiative of Unasur's CDS
Resumo:
This work addresses the effects of catalyst deactivation and investigates methods to reduce their impact on the reactive distillation columns performance. The use of variable feed quality and reboil ratio are investigated using a rigorous dynamic model developed in gPROMS and applied to an illustrative example, i.e., the olefin metathesis system, wherein 2-pentene reacts to form 2-butene and 3-hexene. Three designs and different strategies on column energy supply to tackle catalyst deactivation are investigated and the results compared.