441 resultados para lithography
Resumo:
Micropatterning of functional polymer materials by micromolding in capillaries (MIMIC) with ice mold is reported in this paper. Ice mold was selected due to its thaw or sublimation. Thus, the mold can be easily removed. Furthermore, the polymer solution did not react with, swell, or adhere to the ice mold, so the method is suitable for many kinds of materials (such as P3HT, PMMA Alq(3)/PVK, PEDOT: PSS, PS, P2VP, etc.). Freestanding polymer microstructures, binary polymer pattern, and microchannels have been fabricated by the use of ice mold freely.
Resumo:
The synthetic and functional versatility of dendrimers and their well-defined shapes make them attractive molecules for surface modification. We synthesized six structurally very similar surface-bound dendrons and used them as building blocks for the preparation of self-assembled monolayers (SAMs) on a gold surface. We studied the effects of the surface-bound dendron's main structure, peripheral substituents, and the coadsorption process on its self-assembling behavior. Using scanning tunneling microscopy (STM), we observed nanostripes for SAMs of the surface-bound dendron consisting of symmetrical benzene rings. When we changed the symmetrical dendron's structure slightly, by increasing or decreasing the numbers of benzene rings at one wedge, we found no ordered structures were formed by the asymmetrical dendrons. We also introduced two kinds of substituents, heptane chains and oligo(ethylene oxide) chains, to the symmetrical dendron's periphery. Heptane chains appear to enhance the interaction between symmetrical backbones, leading to the formation of stripes, while oligo(ethylene oxide) chains appear to weaken the interaction between symmetrical backbones, resulting in a homogeneous structure. Dendrons with both heptane and oligo(ethylene oxide) chains exhibit nanophase separation in a confined state, leading to the formation of a honeycomb structure.
Resumo:
Rare-earth ion (Eu3+, Tb3+, Ce3+)- doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a Pechini sol-gel process combined with soft lithography on silicon and silica glass substrates. X-Ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric and differential thermal analysis (TG-DTA), atomic force microscopy (AFM), scanning electron microcopy (SEM), optical microscopy, absorption and photoluminescence (PL) spectra as well as lifetimes were used to characterize the resulting films. The results of XRD indicate that the films begin to crystallize at 700 degreesC and the crystallinity increases with increasing annealing temperature. The morphology of the thin film depends on the annealing temperature and the number of coating layers. The 1000 degreesC annealed single layer film is transparent to the naked eye, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin films with different strip widths ( 5 - 50 mm) were obtained by micromolding in capillaries ( soft lithography). The doped rare earth ions show their characteristic emission in the nanocrystalline LaPO4 films, i.e., Eu3+ D-5(0)-F-7(J) (J = 1, 2, 3, 4), Tb3+ D-5(3,4) - F-7(J) ( J = 6, 5, 4, 3, 2) and Ce3+ 5d-4f transition emissions, respectively. Both the lifetimes and the PL intensities of Eu3+ and Tb3+ increase with increasing annealing temperature, and the optimum concentrations for them were determined to be 5 mol% and 16 mol% of La3+ in LaPO4 thin films, respectively. An energy transfer phenomenon from Ce3+ to Tb3+ has been observed in LaPO4 nanocrystalline thin films, and the energy transfer efficiency depends on the doping concentration of Tb3+ if the concentration of Ce3+ is fixed.
Resumo:
Ce3+ and/or Tb3+-doped LaPO4 nanocrystalline thin films and their patterning were fabricated by a sol-gel process combined with soft lithography on silicon and quartz glass substrates. The results of XRD indicated that the films began to crystallize at 700 degreesC. The 1000 degreesC annealed single layer films are transparent by eyes, uniform and crack-free with a thickness of about 200 nm and an average grain size of 100 nm. Patterned thin film with different band widths (5-50 mum) were obtained by micro-molding in capillaries technique. The luminescence and energy transfer properties of Ce3+ and Tb3+ were studied in LaPO4 films.
Resumo:
The fabrication of multilayer microstructures, for example for organic field-effect transistors, using metal transfer printing (MTP) is demonstrated. The Figure shows a two-layer gold structure produced by MTP. Since MTP is a purely additive technique, in which mechanical adhesion acts as the patterning driving force, it is considered an attractive approach to reel-to-reel processing.
Resumo:
A two-armed polymer with a crown ether core self-assembles to produce macroporous films with pores perpendicularly reaching through the film down to the substrate. A possible assembling mechanism is discussed. The pore size can be conveniently adjusted by changing the solution concentration. These through-hole macroporous films provide a template for fabricating an array of Cu nanoparticle aggregates.
Resumo:
The pattern evolution processes of thin polystyrene (PS) film on chemically patterned substrates during dewetting have been investigated experimentally. The substrates have patterns of self-assembly monolayers produced by microcontact printing with octadecyltrichlorosilane. Optical microscopy and atomic force microscopy images reveal that ordered micrometer scale pattern can be created by surface direct dewetting. Various pattern sizes and pattern complexities can be achieved by controlling the experimental parameters. The dewetting pattern has been transferred to form PDMS stamp for soft lithography.
Resumo:
This paper presents a straightforward method for patterning thin films of polymers, i.e. a prepatterned mask is used to induce self-assembly of polymers and the resulting pattern is the same as the lateral structures in the mask on a submicrometre length scale, The patterns can be formed at above T-g + 30 degreesC in a short time and the external electric field is not crucial. Electrostatic force is assumed to be the driving force for the pattern transfer. Viscous fingering and novel stress-relief lateral morphology induced under the featureless mask are also observed and the formation mechanisms are discussed.
Resumo:
Microtransfer molding (muTM) is a kind of soft lithography for polymer micropatterning. In muTM, a liquid prepolymer(or concentrated polymer solution) is applied to the patterned surface of an elastomeric mold and then brought into the contact with a substrate. After prepolymer is cured thermally or by UV light, the elastomeric mold is peeled away. A pattern is left on the surface of the substrate. In this study, similar to300 nm lines and three-dimensional patterns of PMMA and epoxy on planar and/or non-planar substrates are realized.
Resumo:
Computer simulation has revealed that dual nanostructures for the development of nanodevices as nanowires, optical nanofibres and nanobatteries be obtained by the self-assembly of block copolymers confined geometry. The formation of individual nanostructures depends on the structures of block copolymers the confinement geometry and the interactions block copolymers and the boundary of the confinement geometry. In order to obtain individual nanostructures experimentally, attention needs to be paid to the manufacture of the confinement geometry and the design of the interactions between block copolymers and the boundary of the confinement geometry, The recently developed lithography technique should make experiments successful.
Resumo:
Semiconductor nanowires are pseudo 1-D structures where the magnitude of the semiconducting material is confined to a length of less than 100 nm in two dimensions. Semiconductor nanowires have a vast range of potential applications, including electronic (logic devices, diodes), photonic (laser, photodetector), biological (sensors, drug delivery), energy (batteries, solar cells, thermoelectric generators), and magnetic (spintronic, memory) devices. Semiconductor nanowires can be fabricated by a range of methods which can be categorised into one of two paradigms, bottom-up or top-down. Bottom-up processes can be defined as those where structures are assembled from their sub-components in an additive fashion. Top-down fabrication strategies use sculpting or etching to carve structures from a larger piece of material in a subtractive fashion. This seminar will detail a number of novel routes to fabricate semiconductor nanowires by both bottom-up and top-down paradigms. Firstly, a novel bottom-up route to fabricate Ge nanowires with controlled diameter distributions in the sub-20 nm regime will be described. This route details nanowire synthesis and diameter control in the absence of a foreign seed metal catalyst. Additionally a top-down route to nanowire array fabrication will be detailed outlining the importance of surface chemistry in high-resolution electron beam lithography (EBL) using hydrogen silsesquioxane (HSQ) on Ge and Bi2Se3 surfaces. Finally, a process will be described for the directed self-assembly of a diblock copolymer (PS-b-PDMS) using an EBL defined template. This section will also detail a route toward selective template sidewall wetting of either block in the PS-b-PDMS system, through tailored functionalisation of the template and substrate surfaces.
Resumo:
The atom pencil we describe here is a versatile tool that writes arbitrary structures by atomic deposition in a serial lithographic process. This device consists of a transversely laser-cooled and collimated cesium atomic beam that passes through a 4-pole atom-flux concentrator and impinges on to micron- and sub-micron-sized apertures. The aperture translates above a fixed substrate and enables the writing of sharp features with sizes down to 280 nm. We have investigated the writing and clogging properties of an atom pencil tip fabricated from silicon oxide pyramids perforated at the tip apex with a sub-micron aperture.
Resumo:
Technology boosters, such as strain, HKMG and FinFET, have been introduced into semiconductor industry to extend Moore’s law beyond 130 nm technology nodes. New device structures and channel materials are highly demanded to keep performance enhancement when the device scales beyond 22 nm. In this work, the properties and feasibility of the proposed Junctionless transistor (JNT) have been evaluated for both Silicon and Germanium channels. The performance of Silicon JNTs with 22 nm gate length have been characterized at elevated temperature and stressed conditions. Furthermore, steep Subthreshold Slopes (SS) in JNT and IM devices are compared. It is observed that the floating body in JNT is relatively dynamic comparing with that in IM devices and proper design of the device structure may further reduce the VD for a sub- 60 mV/dec subthreshold slope. Diode configuration of the JNT has also been evaluated, which demonstrates the first diode without junctions. In order to extend JNT structure into the high mobility material Germanium (Ge), a full process has been develop for Ge JNT. Germanium-on-Insulator (GeOI) wafers were fabricated using Smart-Cut with low temperature direct wafer bonding method. Regarding the lithography and pattern transfer, a top-down process of sub-50-nm width Ge nanowires is developed in this chapter and Ge nanowires with 35 nm width and 50 nm depth are obtained. The oxidation behaviour of Ge by RTO has been investigated and high-k passivation scheme using thermally grown GeO2 has been developed. With all developed modules, JNT with Ge channels have been fabricated by the CMOScompatible top-down process. The transistors exhibit the lowest subthreshold slope to date for Ge JNT. The devices with a gate length of 3 μm exhibit a SS of 216 mV/dec with an ION/IOFF current ratio of 1.2×103 at VD = -1 V and DIBL of 87 mV/V.
Resumo:
Integrated nanowire electrodes that permit direct, sensitive and rapid electrochemical based detection of chemical and biological species are a powerful emerging class of sensor devices. As critical dimensions of the electrodes enter the nanoscale, radial analyte diffusion profiles to the electrode dominate with a corresponding enhancement in mass transport, steady-state sigmoidal voltammograms, low depletion of target molecules and faster analysis. To optimise these sensors it is necessary to fully understand the factors that influence performance limits including: electrode geometry, electrode dimensions, electrode separation distances (within nanowire arrays) and diffusional mass transport. Therefore, in this thesis, theoretical simulations of analyte diffusion occurring at a variety of electrode designs were undertaken using Comsol Multiphysics®. Sensor devices were fabricated and corresponding experiments were performed to challenge simulation results. Two approaches for the fabrication and integration of metal nanowire electrodes are presented: Template Electrodeposition and Electron-Beam Lithography. These approaches allow for the fabrication of nanowires which may be subsequently integrated at silicon chip substrates to form fully functional electrochemical devices. Simulated and experimental results were found to be in excellent agreement validating the simulation model. The electrochemical characteristics exhibited by nanowire electrodes fabricated by electronbeam lithography were directly compared against electrochemical performance of a commercial ultra-microdisc electrode. Steady-state cyclic voltammograms in ferrocenemonocarboxylic acid at single ultra-microdisc electrodes were observed at low to medium scan rates (≤ 500 mV.s-1). At nanowires, steady-state responses were observed at ultra-high scan rates (up to 50,000 mV.s-1), thus allowing for much faster analysis (20 ms). Approaches for elucidating faradaic signal without the requirement for background subtraction were also developed. Furthermore, diffusional process occurring at arrays with increasing inter-electrode distance and increasing number of nanowires were explored. Diffusion profiles existing at nanowire arrays were simulated with Comsol Multiphysics®. A range of scan rates were modelled, and experiments were undertaken at 5,000 mV.s-1 since this allows rapid data capture required for, e.g., biomedical, environmental and pharmaceutical diagnostic applications.