949 resultados para elliptical core non-hexagonal symmetry
Resumo:
We present a model of fermion masses based on a minimal, non-Abelian discrete symmetry that reproduces the Yukawa matrices usually associated with U(2) theories of flavor. Mass and mixing angle relations that follow from the simple form of the quark and charged lepton Yukawa textures are therefore common to both theories. We show that the differing representation structure of our horizontal symmetry allows for new solutions to the solar and atmospheric neutrino problems that do not involve modification of the original charged fermion Yukawa textures, or the introduction of sterile neutrinos. (C) 2000 Elsevier Science B.V.
Resumo:
The crystal structures of five new non-electrophilic β-strand-templated thrombin active-site inhibitors have been determined bound to the enzyme. Four co-crystallize with hirugen and inhibitor isomorphously to produce thrombin-hirugen crystals (monoclinic, space group C2), while one co-crystallizes in the hexagonal system, space group P65. A 1,4-substituted cyclohexyl moiety is conserved at the P1 position of all the inhibitors, along with a fused hetero-bicyclic five- and six-membered ring that occupies the P2 site. Amino, amidino and aminoimidazole groups are attached to the cyclohexyl ring for recognition at the S1 specificity site, while benzylsulfonyl and diphenyl groups enhance the binding at the S3 subsite. The cyclohexyl groups at the P1 positions of three of the inhibitors appear to be in the energetically favored chair conformation, while the imidazole-substituted cyclohexyl rings are in a boat conformation. Somewhat unexpectedly, the two cyclohexyl-aminoimidazole groups bind differently in the specificity site; the unique binding of one is heretofore unreported. The other inhibitors generally mimic arginyl binding at S1. This group of inhibitors combines the nonelectrophilicity and selectivity of DAPA-like compounds and the more optimal binding features of the S1-S3 sites of thrombin for peptidic molecules, which results in highly potent (binding constants 12 nM-16 pM, one being 1.1 μM) and selective (ranging from 140 to 20 000 times more selective compared with trypsin) inhibitors of thrombin. The binding modes of these novel inhibitors are correlated with their binding constants, as is their selectivity, in order to provide further insight for the design of therapeutic antithrombotic agents that inhibit thrombin directly at the active site.
Resumo:
It is shown that three-body non-Borromean halo nuclei like 12Be, 18C, 20C, considered as neutron-neutron-core systems, have p-wave virtual states with energy of about 1.7 times the corresponding neutron-core binding energy. We use a renormalizable model that guarantees the general validity of our results in the context of short range interactions.
Resumo:
We derive the equation of state for hot nuclear matter using the Walecka model in a non-perturbative formalism. We include here the vacuum polarization effects arising from the nucleon and scalar mesons through a realignment of the vacuum. A ground state structure with baryon-antibaryon condensates yields the results obtained through the relativistic Hartree approximation of summing baryonic tadpole diagrams. Generalization of such a state to include the quantum effects for the scalar meson fields through the σ -meson condensates amounts to summing over a class of multiloop diagrams. The techniques of the thermofield dynamics method are used for the finite-temperature and finite-density calculations. The in-medium nucleon and sigma meson masses are also calculated in a self-consistent manner. We examine the liquid-gas phase transition at low temperatures (≈ 20 MeV), as well as apply the formalism to high temperatures to examine a possible chiral symmetry restoration phase transition.
Resumo:
We use ideas on integrability in higher dimensions to define Lorentz invariant field theories with an infinite number of local conserved currents. The models considered have a two-dimensional target space. Requiring the existence of lagrangean and the stability of static solutions singles out a class of models which have an additional conformal symmetry. That is used to explain the existence of an ansatz leading to solutions with non-trivial Hopf charges. © SISSA/ISAS 2002.
Resumo:
The objective of this paper is to show an alternative representation in time domain of a non-transposed three-phase transmission line decomposed in its exact modes by using two transformation matrices. The first matrix is Clarke's matrix that is real, frequency independent, easily represented in computational transient programs (EMTP) and separates the line into Quasi-modes α, β and zero. After that, Quasi-modes α and zero are decomposed into their exact modes by using a modal transformation matrix whose elements can be synthesized in time domain through standard curve-fitting techniques. The main advantage of this alternative representation is to reduce the processing time because a frequency dependent modal transformation matrix of a three-phase line has nine elements to be represented in time domain while a modal transformation matrix of a two-phase line has only four elements. This paper shows modal decomposition process and eigenvectors of a non-transposed three-phase line with a vertical symmetry plane whose nominal voltage is 440 kV and line length is 500 km. © 2006 IEEE.
Resumo:
The development of chalcogenide glasses fibers for application in the infrared wavelength region between 1 and 10 μm is a big opportunity. More particularly, the possibility to generate efficient non linear effects above 2 μm is a real challenge. We present in this work the elaboration and optical characterizations of suspended core microstructured optical fibers elaborated from the As2S3 chalcogenide glass. As an alternative to the stack and draw process a mechanical machining has been used to the elaboration of the preforms. The drawing of these preforms into fibers allows reaching a suspended core geometry, in which a 2.5 μm diameter core is linked to the fiber clad region by three supporting struts. The zero dispersion wavelength is thus shifted towards 2 μm. At 1.55 μm our fibers exhibit a dispersion around -250 ps/nm/km. Their background level of losses is below 0,5 dB/m. By pumping them at 1.55 μm with a ps source, we observe self phase modulation as well as Raman generation. Finally a strong spectral enlargement is obtained with an average output power of - 5 dbm. © 2010 SPIE.
Resumo:
In this work we report our achievements in the elaboration and optical characterizations of low-losses suspended core optical fibers elaborated from As2S3 glass. For preforms elaboration, alternatively to other processes like the stack and draw or extrusion, we use a process based on mechanical drilling. The drawing of these drilled performs into fibers allows reaching a suspended core geometry, in which a 2 μm diameter core is linked to the fiber clad region by three supporting struts. The different fibers that have been drawn show losses close to 0.9 dB/m at 1.55 μm. The suspended core waveguide geometry has also an efficient influence on the chromatic dispersion and allows its management. Indeed, the zero dispersion wavelength, which is around 5 μm in the bulk glass, is calculated to be shifted towards around 2μm in our suspended core fibers. In order to qualify their nonlinearity we have pumped them at 1.995 μm with the help of a fibered ns source. We have observed a strong non linear response with evidence of spontaneous Raman scattering and strong spectral broadening. © 2011 SPIE.
Resumo:
Presently it is well known that neutrino oscillation data are well described by massive neutrinos and their mixing. This suggests changes in the standard model (SM) and makes the flavor physics even more interesting. Recently, it has been proposed a multi-Higgs extension of the SM with Abelian and non-Abelian discrete symmetries which seeks to explain the origin of the masses and mixing matrices in all charge sectors. © 2012 Elsevier B.V.
Resumo:
The influence of superficial defects on the vortex configurations of a thin superconducting disk is investigated within the time dependent Ginzburg-Landau formalism. The free energy, magnetization, vorticity, and the Cooper pair density are calculated for both metastable and stable vortex configurations and different number of defects on its surface in the presence of an external magnetic field applied perpendicular to the disk area. We show that the competition between the confinement geometry and the geometric position of the defects leads to non-conventional vortex configurations which are not compatible with the symmetry of the sample geometry.
Resumo:
It is quite difficult to obtain non-trivial chiral symmetry breaking solutions for the quark gap equation in the presence of dynamically generated gluon masses. An effective confining propagator has recently been proposed by Cornwall in order to solve this problem. We study phenomenological consequences of this approach, showing its compatibility with the experimental data. We argue that this confining propagator should be restricted to a small region of momenta, leading to effective four-fermion interactions at low energy. © 2013 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: This study evaluated the effect of different surface conditioning protocols on the repair strength of resin composite to the zirconia core / veneering ceramic complex, simulating the clinical chipping phenomenon.Materials and Methods: Forty disk-shaped zirconia core (Lava Zirconia, 3M ESPE) (diameter: 3 mm) specimens were veneered circumferentially with a feldspathic veneering ceramic (VM7, Vita Zahnfabrik) (thickness: 2 mm) using a split metal mold. They were then embedded in autopolymerizing acrylic with the bonding surfaces exposed. Specimens were randomly assigned to one of the following surface conditioning protocols (n = 10 per group): group 1, veneer: 4% hydrofluoric acid (HF) (Porcelain Etch) + core: aluminum trioxide (50-mu m Al2O3) + core + veneer: silane (ESPE-Sil); group 2: core: Al2O3 (50 mu m) + veneer: HF + core + veneer: silane; group 3: veneer: HF + core: 30 mu m aluminum trioxide particles coated with silica (30 mu m SiO2) + core + veneer: silane; group 4: core: 30 mu m SiO2 + veneer: HF + core + veneer: silane. Core and veneer ceramic were conditioned individually but no attempt was made to avoid cross contamination of conditioning, simulating the clinical intraoral repair situation. Adhesive resin (VisioBond) was applied to both the core and the veneer ceramic, and resin composite (Quadrant Posterior) was bonded onto both substrates using polyethylene molds and photopolymerized. After thermocycling (6000 cycles, 5 degrees C-55 degrees C), the specimens were subjected to shear bond testing using a universal testing machine (1 mm/min). Failure modes were identified using an optical microscope, and scanning electron microscope images were obtained. Bond strength data (MPa) were analyzed statistically using the non-parametric Kruskal-Wallis test followed by the Wilcoxon rank-sum test and the Bonferroni Holm correction (alpha = 0.05).Results: Group 3 demonstrated significantly higher values (MPa) (8.6 +/- 2.7) than those of the other groups (3.2 +/- 3.1, 3.2 +/- 3, and 3.1 +/- 3.5 for groups 1, 2, and 4, respectively) (p < 0.001). All groups showed exclusively adhesive failure between the repair resin and the core zirconia. The incidence of cohesive failure in the ceramic was highest in group 3 (8 out of 10) compared to the other groups (0/10, 2/10, and 2/10, in groups 1, 2, and 4, respectively). SEM images showed that air abrasion on the zirconia core only also impinged on the veneering ceramic where the etching pattern was affected.Conclusion: Etching the veneer ceramic with HF gel and silica coating of the zirconia core followed by silanization of both substrates could be advised for the repair of the zirconia core / veneering ceramic complex.
Resumo:
We study the effects of management of the PT-symmetric part of the potential within the setting of Schrodinger dimer and trimer oligomer systems. This is done by rapidly modulating in time the gain/loss profile. This gives rise to a number of interesting properties of the system, which are explored at the level of an averaged equation approach. Remarkably, this rapid modulation provides for a controllable expansion of the region of exact PT-symmetry, depending on the strength and frequency of the imposed modulation. The resulting averaged models are analysed theoretically and their exact stationary solutions are translated into time-periodic solutions through the averaging reduction. These are, in turn, compared with the exact periodic solutions of the full non-autonomous PT-symmetry managed problem and very good agreement is found between the two.