Fossil pollen record of composite sediment core TMD from Tso Moriri, analysis of modern surface pollen samples, mean annual precipitation reconstruction, and digitisation and recalibration of different discussed palaeoclimate proxy records


Autoria(s): Leipe, Christian; Demske, Dieter; Tarasov, Pavel E
Cobertura

MEDIAN LATITUDE: 29.555723 * MEDIAN LONGITUDE: 75.835791 * SOUTH-BOUND LATITUDE: 18.051800 * WEST-BOUND LONGITUDE: 57.609000 * NORTH-BOUND LATITUDE: 36.870000 * EAST-BOUND LONGITUDE: 100.170000 * DATE/TIME START: 1987-09-15T11:45:00 * DATE/TIME END: 1987-09-17T04:30:00

Data(s)

18/03/2013

Resumo

This paper presents a new fossil pollen record from Tso Moriri (32°54'N, 78°19'E, 4512 m a.s.l.) and seeks to reconstruct changes in mean annual precipitation (MAP) during the last 12,000 years. This high-alpine lake occupies an area of 140 km**2 in a glacial-tectonic valley in the northwestern Himalaya. The region has a cold climate, with a MAP <300 mm, and open vegetation. The hydrology is controlled by the Indian Summer Monsoon (ISM), but winter westerly-associated precipitation also affects the regional water balance. Results indicate that precipitation levels varied significantly during the Holocene. After a rapid increase in MAP, a phase of maximum humidity was reached between ca. 11 to 9.6 cal ka BP, followed by a gradual decline in MAP. This trend parallels the reduction in the Northern Hemisphere summer insolation. Comparison of different palaeoclimate proxy records reveal evidence for a stronger Holocene decrease in precipitation in the northern versus the southern parts of the ISM domain. The long-term trend of ISM weakening is overlaid with several short periods of greater dryness, which are broadly synchronous with the North Atlantic cold spells, suggesting reduced amounts of westerly-associated winter precipitation. Compared to the mid and late Holocene, it appears that westerlies had a greater influence on the western parts of the ISM domain during the early Holocene. During this period, the westerly-associated summer precipitation belt was positioned at Mediterranean latitudes and amplified the ISM-derived precipitation. The Tso Moriri pollen record and moisture reconstructions also suggest that changes in climatic conditions affected the ancient Harappan Civilisation, which flourished in the greater Indus Valley from approximately 5.2 to 3 cal ka BP. The prolonged Holocene trend towards aridity, punctuated by an interval of increased dryness (between ca. 4.5 to 4.3 cal ka BP), may have pushed the Mature Harappan urban settlements (between ca. 4.5 to 3.9 cal ka BP) to develop more efficient agricultural practices to deal with the increasingly acute water shortages. The amplified aridity associated with North Atlantic cooling between ca. 4 to 3.6 and around 3.2 cal ka BP further hindered local agriculture, possibly causing the deurbanisation that occurred from ca. 3.9 cal ka BP and eventual collapse of the Harappan Civilisation between ca. 3.5 to 3 cal ka BP.

Formato

application/zip, 7 datasets

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.808958

doi:10.1594/PANGAEA.808958

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Leipe, Christian; Demske, Dieter; Tarasov, Pavel E (2014): A Holocene pollen record from the northwestern Himalayan lake Tso Moriri: Implications for palaeoclimatic and archaeological research. Quaternary International, 348, 93-112, doi:10.1016/j.quaint.2013.05.005

Palavras-Chave #0 = modern; 68 %; 68 %, this study; A/C ratio, where A = Artemisia %, and C = Chenopodiaceae %; A. filix-femina-T; A. subfam. Cichorioideae; Abi; Abies; Ace; Acer; Aconogonon; Adiantum-type; Adi-T; Aer-T; Aerva-type; Aes; Aesculus; after Gupta et al. (2003); after Gupta et al. (2003); # = not used in the age-depth model; Age; AGE; Age, 14C recalibrated, this study; Age, dated; Age, standard deviation; Age dated; Age std dev; Allium-type; All-T; Aln; Aln.f-T; Aln.ud; Alnus; Alnus fruticosa-type; Alnus undifferentiated; Amaranthus; Analyst; Anchusa-type; Anc-T; And; Androsace; Anemone/Clematis-T; Anemone/Clematis-type; Anthemis-type; Ant-T; AP; AP/NAP ratio, where AP = arboreal pollen % and NAP = non-arboreal pollen %; Api.ud; Apiaceae; Apiaceae undifferentiated; Apiae; Apl-T; Arboreal pollen; Arenaria-type; Are-T; Art; Artemisia; Asplenium-type; Ast/Gna-T; Aster/Gnaphalium-type; Asteraceae subfam. Cichorioideae; Aster-type; Astra/Oxy-T; Astragalus/Oxytropis-type; Ast-T; Athyrium filix-femina-type; B. utilis-T; based on recalibrated 14C ages (see doi:10.1594/PANGAEA.808956), this study; Ber; Berberis; Bergenia; Bergenia-T; Bergenia-type; Bet.ud; Betula undifferentiated; Betula utilis-type; Biebersteinia; Bist; Bistorta; Borae; Boraginaceae; Bot; Botrychium; Braae; Brassicaceae; Bupleurum-type; Bup-T; Bux; Buxus; C. viminea-T; Calendar years; Caltha/Isopyrum-T; Caltha/Isopyrum-type; Cal yrs; Campanula-type; Cam-T; Cannabis-type; Can-T; Car/Cir-T; Carduus/Cirsium-type; Carex-type; Carpinus undifferentiated; Carpinus viminea-type; Carp undiff; Car-T; Carya; Caryophyllaceae undifferentiated; Cas-T; Castanea-type; Ced; Cedrus; Cel; Celtis; Cerastium-type; Ceratostigma; Cer-T; Cheilanthes-type; CI; Clematis/Anemone-T; Clematis/Anemone-type; Clethra-T; Clethra-type; Clt-T; Cod; Con; Confidence interval; Convolvulus; Cor; Corydalis; Corylus; Cos-T; Cotoneaster-type; Cphae.ud; Cryptogramma-T; Cryptogramma-type; Cya; Cypae; Cyperaceae; Cys.f-T; Cystopteris fragilis-type; d18O; Delphinium-type; Del-T; delta 18O; Depth; Depth, bottom/max; Depth, composite; DEPTH, sediment/rock; Depth, top/min; Depth bot; Depth comp; Depth top; digitised from Lister et al. (1991); digitised from Van Campo & Gasse (1993) and Van Campo et al. (1996); Dolichos-T; Dolichos-type; Drp-T; Dryopteris-type; Elaeagnus; Ele; Eph.d-T; Eph.f-T; Ephedra distachya-type; Ephedra fragilis-type; Equ; Equisetum; Ere; Eremurus; Eriae; Ericaceae; Eup; Euphorbia; Event; Fagopyrum; Fgy; G. bulloides; Galium-type; Gal-T; Gen.c-T; Gen.t-T; Gen.x-T; Gentiana pneumonanthe-type; Gentianella campestris-type; Gentianella tenella-type; Ger; Geranium; Geu/Pot-T; Geum/Potentilla-type; Gla-T; Glaucium-type; Glaux; Globigerina bulloides; Glx; Gnaphalium-type; Gna-T; Grewia; Hamamelis/Parrotiopsis-T; Hamamelis/Parrotiopsis-type; Herniaria-type; Hippophae; His-T; Histiopteris-type; Hpp; Hrn-T; Imp; Impatiens; Jasione/Wahlenbergia-T; Jasione/Wahlenbergia-type; Jug; Juglans; Juniperus-type; Jun-T; K. delicatula; K. islandica/nepalensis-T; Knorringia-T; Knorringia-type; Koenigia delicatula; Koenigia islandica/nepalensis-type; Koenigia-T; Koenigia-type; Label; Lam.ud; Lamiaceae undifferentiated; Lar; Larix; Lat/Vici-T; Lathyrus/Vicia-type; Lom; Lomatogonium; Lon; Lonicera; Lycium; Lyi; Mallotus; MAP; Meconopsis; Meliaceae; Meliceae; Mentha/Elsholtzia-T; Mentha/Elsholtzia-type; Min-T; Minuartia-type; monolete; Mor; Morus; Myc-T; Myr; Myrica; Myricaria-type; Nit; Nitraria; No; Number; of fresh sample; Ophelia-T; Ophelia-type; Osmu; Osmunda; P. polystachyum-T; P. s/g Diplo-T; P. s/g Haplo-T; Pap.a-T; Papaver argemone-type; Papaver-type; Pap-T; Ped; Pedicularis; per mil PDB; Physochlaina-T; Physochlaina-type; Pic; Picea; Pin.s-T; Pinaceae undifferentiated; Pinea undiff; Pinus subgen. Diploxylon-type; Pinus subgen. Haploxylon-type; Pinus sylvestris-type; Pinus undiff; Pinus undifferentiated; Pla; Pla.l-T; Pla.ud; Plantago; Plantago lanceolata-type; Plantago undifferentiated; Pls-T; Poac; Poac.ud; Poaceae; Poaceae undifferentiated; Pod; Podocarpus; Pol; Pol.n-T; Pollen, total concentration; Pollen conc; Pollen indet; Pollen indeterminata; Polygonum; Polygonum nepalensis-type; Polygonum polystachyum-type; Polystichum-type; Pop; Populus; Potentilla/Chamaerhodos-type; Potentilla/Chamaer-T; Potentilla-type; Precipitation, annual mean; Primula-type; Pri-T; Prn-T; Prunella/Nepeta-T; Prunella/Nepeta-type; Prunus-type; Ptd-T; Pteridium-type; Pteris-type; Pte-T; Pti-T; Pyrrosia-T; Pyrrosia-type; Que; Que.cf.se; Quercus; Quercus cf. Q. semecarpifolia; Quercus s/g Cyclobalanopsis; Quercus subgen. Cyclobalanopsis; R. alpinum-T; Ran-T; Ranunculus-type; Ratio; Reconstructed; Rha; Rhamnus; Rhamnus-type; Rha-T; Rhe; Rheum; Ribes alpinum-type; Rosaceae undifferentiated; Rosae.ud; Rosa-type; Ros-T; Rum; Rumex; Rutaceae undiff; Rutaceae undifferentiated; S. granulata/hirculus-T; S. hirsuta/cuneifolia-T; Sag; Sagina; Sal; Salix; Sam; Sambucus; Sample code/label; Saussurea-type; Sau-T; Sax.c-T; Sax.s-T; Saxifraga cernua-type; Saxifraga granulata/hirculus-type; Saxifraga hirsuta/cuneifolia-type; Saxifraga stellaris-type; Sco; Scorzonera; Sco-T; Scrophularia-type; Sed-T; Sedum-type; Sibbaldia; Sibbaldia-T; Sibbaldia-type; Silene-type; Sil-T; Solanum-T; Solanum-type; Sorbus/Cotoneaster-T; Sorbus/Cotoneaster-type; Sorbus-type; Sor-T; Spergularia-type; Spg-T; Spiraea-type; Spi-T; Spores, monolete; Spores, trilete; Stachys-type; Sta-T; Strobilanthes-T; Strobilanthes-type; Swertia-T; Swertia-type; Symplocos; Tha; Thalictrum; this study; Tribulus; trilete spores; Tsu; Tsuga; Tus; Ulm; Ulmus; Urtae; Urticaceae; V. clarkei/himalayana-T; Valeriana clarkei/himalayana-type; Veronica-type; Ver-T; Vol; Volume; Woodsia/Athyrium-T; Woodsia/Athyrium-type
Tipo

Dataset