974 resultados para electricspray ionization mass spectrum
Resumo:
ESI-MS was adopted to detect the difference of alkaloids compounds between root of Kusnezoffii Monkshood(RKM) and the compatibility of RKM and Fructus Chebulae(FC). Contrast to the diethyl ether extract of RKM, the relative abundance of diester-alkaloids decreased significantly when Fructus Chebulae was added, whereas it of lipo-alkaloids increased markedly. The results indicated that the acid components of Fructus Chebulae reduced the dissolvability of diester-alkaloids in diethyl ether
Resumo:
The interaction of mitoxantrone (MXT) with duplex and triplex DNA, contain repeating sequence CTCT, CCTT and CTT were studied by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The 1:3 specific complexes of mitoxantrone and duplex DNA and 1:2 specific complexes of mitoxantrone and triplex DNA were observed. The results show that mitoxantrone has no remarkable sequence selectivity, however it has distinct structure selectivity, and destabilization the triplex.
Resumo:
The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co2+ and Ni2+, significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba2+ is notably beneficial to the formation of homodimer instead of triplex.
Resumo:
High performance liquid chromatography-electrospray ionization mass spectrometry(HPLC/ESI-MSn) was applied to analyze the chemical constituents from n-BuOH extract of Folium Isatidis.The data of retention time,UV spectra,molar masses and structural information on the compounds were obtained.Seventeen compounds are found in extract from n-BuOH.There are four nucleosides,two purines and eleven flavones.
Resumo:
Four individual quadruplexes, which are self-assembled in ammonium acetate solution from telomeric sequences of closely related DNA strands - d(G(4)T(4)G(4)), d(G(3)T(4)G(4)), d(G(3)T(4)G(3)), and d(G(4)T(4)G(3)) - have been detected in the gas phase using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The bimolecular quadruplexes associate with the same number of NH4+ in the gas phase as NMR shows that they do in solution. The quadruplex structures formed in solution are maintained in the gas phase. Furthermore, the mass spectra show that the bimolecular quadruplexes generated by the strands d(G(3)T(4)G(3)) and d(G(4)T(4)G(3)) are unstable, being converted into trimolecular and tetramolecular structures with increasing concentrations of NH4+ in the solution. Circular dichroism (CD) spectra reveal structural changes during the process of strand stoichiometric transitions, in which the relative orientation of strands in the quadruplexes changes from an antiparallel to a parallel arrangement. Such changes were observed for the strand d(G(4)T(4)G(3)), but not for the strand d(G(3)T(4)G(3)). The present work provides a significant insight into the formation of various DNA quadruplexes, especially the higher-order species.
Resumo:
To study the content variation of ginsenosides and alkaloids during combination of ginseng with veratrum nigrum, the ginsenosides and alkaloids in the decoction of ginseng with veratrum nigrum were analyzed and compared by high performance liquid chromatography-electrospray ionization-mass spectrometry (HPLC-ESI-MS) and electrospray ionization-mass spectrometry (ESI-MS). In the compatible decoction, eight ginsenosides and eight alkaloids. were detected, and the contents of six ginsenosides were found to be reduced, on the contrary, the contents of six alkaloids were increased. During combination of ginseng with veratrum nigrum, the contents of ginsenosides were reduced and those of the toxic alkaloids were increased. From the chemical point of view, the traditional theory is right that ginseng and veratrum nigrum are incompatible with each other.
Resumo:
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF-MS), in combination with immunoaffinity provided a powerful tool for determining epitope (antigenic determinant) in protein. The linear epitope of the beta(2)-microglobulin was characterized in the paper. The method as follows: at first beta(2)-microglobulin was digested by a proteolytic enzyme to produce an appropriate set of peptide fragments, then peptide fragments containing the linear epitope were selected and separated from the pool of peptide fragments by immunoprecipitation with the monoclonal antibody. The agarose beads were collected carefully after the reaction. Unbound peptides would be washed away, while the peptides containing the epitope would remain bound to the immobilized antibody after. the beads were washed several times with appropriate buffer. At last the masses of the bound peptides were identified directly by MALDI-TOF MS. Using Endoproteinase Glu-C Endoproteinase Lys-C and Trypsin in the experiment, the linear epitope of beta(2)-microglobulin was located within peptide fragment 59-69, that is, DWSFYLLYYTE.
Resumo:
Traditional Chinese Medicine (TCM) based on natural products is one important part of the Chinese civilization.Owing to the complexity of the composition,the study on medical effective components and curative effects are very difficult;Fuzi (Radix Aconiti Lateralis Praeparata) has been widely used for cardiotonic and analgesics in China,however,the component-aconitine in which is very toxic and may cause some side-effect.This paper reported the application of electrospray iohization mass spectrometric(ESIMS) technique on study of the compound prescriptions containing fuzi,Renshensini concoction and Baweidihuang concoction,to explore the mechanism of synergy between fuzi and other herbs.From chemical point of view,the detoxification mechanism can be attributed to the hydrolysis of the solubility of toxic diester-alkaloids from concoctions of fuzi.Radix Glycyrrhizae Praeparata,Rhizoma Zingiberis,Radix Ginsengp promote the hydrolysis to produce the less toxic monoester-alkaloids and Fructus Corni reduce the solubility of hypaconitine from fuzi.
Resumo:
A simple route for the preparation of lipo-alkaloid is presented. When aconitine or one of its analogues is heated with a fatty acid for 20 min at 100degreesC in water, the C-8 acetyl group of aconitine is displaced by along chain fatty acyl group. The structures of the products were characterized by electrospray ionization tandem mass spectrometry.
Resumo:
A capillary zone electrophoresis with end-column electrochemiluminescence (ECL) detector was described for the determination of benzhexol hydrochloride. The detection was based on the tris(2,2'-bypyridine)ruthenium(II) [Ru(bpy)(3)(2+)] ECL reaction with the analyte. Electrophoresis was performed using a 25 mum i.d. uncoated capillary. 10 mM sodium phosphate buffer (pH=8.0) was used as the running buffer. The solution in the detection cell was 80 mM sodium phosphate (pH=8.0) and 5 mM)21 Ru(bpy)(3)(2+). A linear calibration curve of three-orders of magnitude was obtained (with a correlation coefficient of > 0.999) from 1.0X10(-8) to 1.0X10(-5) M and the limit of detection was 6.7 X 10(-9) M (S/N= 3). This just provides an easy and sensitive method to determine the active ingredient in pharmaceutical formulations.
Resumo:
An aluminum/Schiff base complex {[2,2-dimethyl-1,3-propylenebis(3,5-di-tert-butylsalicylideneiminato)](isopropanolato)aluminum(III) (2)} based on a bulky ligand and aluminum isopropoxide was prepared and employed for the stereoselective ring-opening polymerization (ROP) of rac-lactide (rac-LA). The initiator was characterized with nuclear magnetic resonance (NMR), crystal structure measurements, and elemental analysis. It contained a five-coordinate aluminum atom that was trigonal bipyramidal in the solid state according to the crystal structure measurements. The two conformational stereoisomers of 2 exchanged quickly on the NMR scale. Compound 2 polymerized rac-LA into a crystalline polymer that was characterized with H-1 NMR, wide-angle X-ray diffraction, electrospray ionization mass spectrometry, and gel permeation chromatography. The kinetics of the polymerization were first-order in both the monomer and initiator, and there was a linear relationship between the rac-LA conversion and the number-average molecular weight of poly(rac-LA) with a narrow molecular distribution (1.04-1.08). These features showed that the polymerization was well controlled. The high melting temperature (196-201 degreesC) and isotacticity of poly(rac-LA) indicated that complex 2 was a highly stereoselective initiator for the ROP of rac-LA.
Resumo:
A monoethylaluminum Schiff base complex (2) with formula LA1Et (L = N,N'-(2,2-dimethylpropylene)bis(3,5-di-tei-t-butylsalicylideneimine) was synthesized and employed for the stercoselective ring-opening polymerization of rac-lactide (rac-LA). The complex 2 was characterized by nuclear magnetic resonance, crystal structure, and elemental analysis. It contains a five-coordinate aluminum atom with distorted trigonal bipyramidal geornetry in the solid state. In the presence of 2-propanol, 2 showed high stereoselectivity for the polymerization of rac-LA. The polymerization yielded crystalline poly(rac-LA) with a high melting temperature (193-201 degreesC). NMR, differential scanning calorimetry, and wide-angle X-ray diffraction indicated that the poly(rac-LA) was highly isotactic, and a stereocomplex was formed between poly-L- and poly-D-lactide block sequences. By the analysis of electrospray-ionization mass spectrometry and H-1 NMR, the polymer was demonstrated to be endcapped in both terminals with an isopropyl ester and a hydroxy group, respectively. The polymerization was of first order in rac-LA concentration. The relationship between the rac-LA conversion and molecular weights of the polymer was linear so that the polymerization could be well controlled.
Resumo:
The 24-mer DNA aptamer of Harada and Frankel ( Harada, K.; Frankel, A. D. EMBO J. 1995, 14, 5798-5811) that binds L-argininamide (L-Arm) was studied by electrospray ionization Fourier transform mass spectrometry (ESI-FTMS). This DNA folds into a stem and loop such that the loop is able to engulf L-Arm. As controls, two derivatives of the same base composition, one with the same stem but a scrambled loop and the other with no ability to form a secondary structure, were studied. The two DNAs that could fold into stem-loop structures showed a more negatively charged distribution of ions than the linear control. This tendency was preserved in the presence of ligand; complexes expected to have more secondary structure had ions with more negative charges. Distinct species corresponding to no, one, and two bound L-Arm molecules were observed for each DNA. The fractional peak intensities were fit to a straightforward binding model and binding constants were obtained. Thus, ESI-FTMS can provide both qualitative and quantitative data regarding the structure of DNA and its interactions with noncovalent ligands.
Resumo:
The interaction mechanism between Eu3+ and microperoxidase-II (MP-11) in the aqueous solution was investigated using the UV-vis absorption spectroscopy, cyclic voltammetry and electrospray ionization mass spectrometry. It was found that one Eu3+ ion can coordinate with two carboxyl oxygen of two propionic acid groups of the heme group in the MP-11 molecule, leading the increase in the nonplanarity of the porphyrin ring and exposure degree of Fe(III) in the heme group. Therefore, the reversibility of the electrochemical reaction and the electrocatalytic activity of MP-11 for the reduction of oxygen are increased.
Resumo:
The structure and the electron-transfer of cytochrome c binding on the anionic lipid vesicles were analyzed by electrochemical and various spectroscopic methods. It was found that upon binding to anionic lipid membrane, the formal potential of. cytochrome c shifted 30 mV negatively indicating an eager redox interaction than that in its native state. This is due to the local alteration of the coordination and the heme crevice. The structural Perturbation in which a molten globule-like state is formed during binding to anionic lipid vesicles is more important. This study may help to understand the mechanism of the electron-transfer reactions of cytochrome c at the mitochondrial membrane.