995 resultados para beam scattering
Resumo:
Germanium nanowires were grown on Au coated Si substrates at 380 degrees C in a high vacuum (5 x 10(-5) Torr) by e-beam evaporation of Germanium (Ge). The morphology observation by a field emission scanning electron microscope (FESEM) shows that the grown nanowires are randomly oriented with an average length and diameter of 600 nm and 120 nm respectively for a deposition time of 60 min. The nanowire growth ratewas measured to be similar to 10 nm/min. Transmission electron microscope (TEM) studies revealed that the Ge nanowires were single crystalline in nature and further energy dispersive X-ray analysis(EDAX) has shown that the tip of the grown nanowires was capped with Au nanoparticles, this shows that the growth of the Ge nanowires occurs by the vapour liquid solid (VLS) mechanism. HRTEM studies on the grown Ge nanowire show that they are single crystalline in nature and the growth direction was identified to be along [110]. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
dThe work looks at the response to three-point loading of carbon-epoxy (CF-EP) composites with inserted buffer strip (BS) material. Short beam Shear tests were performed to study the load-deflection response as well as fracture features through macroscopy on the CF-EP system containing the interleaved PTFE-coated fabric material. Significant differences were noticed in the response of the CF-EP system to the bending process consequent to the architectural modification. It was inferred that introduction of small amounts of less adherent layers of material at specific locations causes a decrement in the load carrying capability. Further the number and the ease with which interface separation occurs is found to depend on the extent to which the inserted layer is present in either single or multiple layer positions.
Resumo:
Beams with a central edge crack, as well as other noncentral vertical and inclined edge cracks distributed symmetrically, subjected to three-point as well as four-point bending, are analysed using the finite element technique. Values of stress intensity factor K1 at the central crack tip for a crack-to-beam depth ratio Image equal to 0.5, are calculated for various cracked-beam configurations, using the compliance calibration technique as well as method of strain energy release rate. These are compared with the value of K1 for the case of a beam with central edge crack alone. Results of the present parametric study are used to specify the range of values pertaining to basic parameters such as crack-to-beam depth ratios, geometry and position with respect to central edge crack, of other macrocracks for which interaction exists. Accordingly, the macrocracks are classified as either interacting or noninteracting types. Hence for noninteracting types of cracks, analytical expressions available for the determination of K1 in the case of beam with a central edge crack alone, are applicable.
Resumo:
Brillouin scattering studies on single crystals of a charge-ordered manganite, Nd0.5Ca0.5MnO3, have been carried out for the first time. The spectra show two modes at similar to 27 GHz (B-mode) and 60 GHz (S-mode). The B-mode frequency and intensity from 300 K to 27 K, covering both the charge ordering transition at 250 K and the antiferromagnetic transition, at 170 K, exactly follow the same temperature dependence as the d.c. magnetic susceptibility. The B-mode is associated With bulk magnetic excitations and the S-mode with surface magnetic excitations of the manganite with ferromagnetic correlations. The study is strongly indicative of the presence of ferromagnetic inhomogeneities in the charge-ordered as well as antiferromagnetic phases.
Resumo:
A compact, high brightness 13.56 MHz inductively coupled plasma ion source without any axial or radial multicusp magnetic fields is designed for the production of a focused ion beam. Argon ion current of density more than 30 mA/cm(2) at 4 kV potential is extracted from this ion source and is characterized by measuring the ion energy spread and brightness. Ion energy spread is measured by a variable-focusing retarding field energy analyzer that minimizes the errors due t divergence of ion beam inside the analyzer. Brightness of the ion beam is determined from the emittance measured by a fully automated and locally developed electrostatic sweep scanner. By optimizing various ion source parameters such as RF power, gas pressure and Faraday shield, ion beams with energy spread of less than 5 eV and brightness of 7100 Am(-2)sr(-1)eV(-1) have been produced. Here, we briefly report the details of the ion source, measurement and optimization of energy spread and brightness of the ion beam. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An electron-beam melting and centrifugal splat-quenching technique for the production of microflakes of Ti-6A1-4V (wt%) alloy quenched at an average cooling rate of about 105 K sec–1 is described. The effect of substrate angle on the shape, size, microstructure and average cooling rate of the flakes of major sieve fractions is discussed. Morphologies of particles of minor sieve fractions are dealt with briefly.
Resumo:
InN quantum dots (QDs) were fabricated on Si(111) substrate by droplet epitaxy using an RF plasma-assisted MBE system. Variation of the growth parameters, such as growth temperature and deposition time, allowed us to control the characteristic size and density of the QDs. As the growth temperature was increased from 100 C to 300 degrees C, an enlargement of QD size and a drop in dot density were observed, which was led by the limitation of surface diffusion of adatoms with the limited thermal energy. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to assess the QDs size and density. The chemical bonding configurations of InN QDs were examined by X-ray photo-electron spectroscopy (XPS). Fourier transform infrared (FTIR) spectrum of the deposited InN QDs shows the presence of In-N bond. Temperature-dependent photoluminescence (PL) measurements showed that the emission peak energies of the InN QDs are sensitive to temperature and show a strong peak emission at 0.79 eV.
Resumo:
Ion implantation systems, used for producing high-current ion beams, employ wide-beam ion sources which are rotated through 90 degrees . These sources need mass analyser optics which are different from the conventional design. The authors present results of calculation of the image distance as a function of entrance and exit angles of a sector magnet mass analyser having such a source. These computations have been performed for the magnetic deflection angles 45 degrees , 60 degrees and 90 degrees . The details of the computations carried out using the computer program MODBEAM, developed for this purpose, are also discussed.
Resumo:
Inelastic x-ray scattering spectroscopy is a versatile experimental technique for probing the electronic structure of materials. It provides a wealth of information on the sample's atomic-scale structure, but extracting this information from the experimental data can be challenging because there is no direct relation between the structure and the measured spectrum. Theoretical calculations can bridge this gap by explaining the structural origins of the spectral features. Reliable methods for modeling inelastic x-ray scattering require accurate electronic structure calculations. This work presents the development and implementation of new schemes for modeling the inelastic scattering of x-rays from non-periodic systems. The methods are based on density functional theory and are applicable for a wide variety of molecular materials. Applications are presented in this work for amorphous silicon monoxide and several gas phase systems. Valuable new information on their structure and properties could be extracted with the combination of experimental and computational methods.
Resumo:
The ion energy distribution of inductively coupled plasma ion source for focused ion beam application is measured using a four grid retarding field energy analyzer. Without using any Faraday shield, ion energy spread is found to be 50 eV or more. Moreover, the ion energy distribution is found to have double peaks showing that the power coupling to the plasma is not purely inductive, but a strong parasitic capacitive coupling is also present. By optimizing the various source parameters and Faraday shield, ion energy distribution having a single peak, well separated from zero energy and with ion energy spread of 4 eV is achieved. A novel plasma chamber, with proper Faraday shield is designed to ignite the plasma at low RF powers which otherwise would require 300-400 W of RF power. Optimization of various parameters of the ion source to achieve ions with very low energy spread and the experimental results are presented in this article. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Nanosized hexagonal InN flower-like structures were fabricated by droplet epitaxy on GaN/Si(111) and GaN flower-like nanostructure fabricated directly on Si(111) substrate using radio frequency plasma-assisted molecular beam epitaxy. Powder X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to study the crystallinity and morphology of the nanostructures. Moreover, X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL) were used to investigate the chemical compositions and optical properties of nano-flowers, respectively. Activation energy of free exciton transitions in GaN nano-flowers was derived to be similar to 28.5 meV from the temperature dependent PL studies. The formation process of nano-flowers is investigated and a qualitative mechanism is proposed.
Resumo:
Spectroscopy can provide valuable information on the structure of disordered matter beyond that which is available through e.g. x-ray and neutron diffraction. X-ray Raman scattering is a non-resonant element-sensitive process which allows bulk-sensitive measurements of core-excited spectra from light-element samples. In this thesis, x-ray Raman scattering is used to study the local structure of hydrogen-bonded liquids and solids, including liquid water, a series of linear and branched alcohols, and high-pressure ice phases. Connecting the spectral features to the local atomic-scale structure involves theoretical references, and in the case of hydrogen-bonded systems the interpretation of the spectra is currently actively debated. The systematic studies of the intra- and intermolecular effects in alcohols, non-hydrogen-bonded neighbors in high-pressure ices, and the effect of temperature in liquid water are used to demonstrate different aspects of the local structure that can influence the near-edge spectra. Additionally, the determination of the extended x-ray absorption fine structure is addressed in a momentum-transfer dependent study. This work demonstrates the potential of x-ray Raman scattering for unique studies of the local structure of a variety of disordered light-element systems.
Resumo:
An ultraviolet photoelectron spectrometer for the study of van der Waals molecules has been designed and fabricated indigenously. The spectrometer consists of an HeI discharge lamp, a molecular beam sample inlet system, an electrostatic lens, a 180-degrees hemispherical electrostatic analyser and a channeltron detector. Performance of the spectrometer is illustrated with an example.
Resumo:
A simple technique for the measurement of the beam shape parameters of pulsed lasers, with just a single pulse of the laser is described. It involves the use of several beam dividers inclined at very small angles to the beam axis, reflecting the beam back to a screen or a phosphor placed near the exit of the laser. The reflected images are then photographed by a camera to yield the beam parameters.
Resumo:
The free vibrational characteristics of a beam-column, which is having randomly varying Young's modulus and mass density and subjected to randomly distributed axial loading is analysed. The material property fluctuations and axial loadings are considered to constitute independent one-dimensional, uni-variate, homogeneous real, spatially distributed stochastic fields. Hamilton's principle is used to formulate the problem using stochastic FEM. Vibration frequencies and mode shapes are analysed for their statistical descriptions. A numerical example is shown.