950 resultados para auricular implant
Resumo:
Purpose: The aim of this study was to investigate the level of microstrain that is exerted during polymerization of acrylic resins used for splinting during implant impressions. Material and Methods: Two acrylic resins (GC Pattern Resin, Duralay II) and square transfer coping splinting methods were evaluated by means of strain gauge analysis. Two implants were embedded in a polyurethane block, and the abutments were positioned. Sixty specimens were prepared using two square transfer Copings that were rigidly connected to each other using the acrylic resins. The specimens were randomly divided into three groups of 20 each for the splinting methods: Method 1 was a one-piece method; in method 2, the splint was separated and reconnected after 17 minutes; and in method 3, the splint was separated and reconnected after 24 hours. In each group, half the specimens were splinted with GC Pattern Resin and the other half were splinted with Duralay II. Three microstrain measurements were performed by four strain gauges placed on the upper surface of the polyurethane blocks at 5 hours after resin polymerization for all groups. The data were analyzed statistically. Results: Both resin type and splinting method significantly affected microstrain. interaction terms were also significant. Method 1 in combination with Duralay II produced significantly higher microstrain (1,962.1 mu epsilon) than the other methods with this material (method 2: 241.1 mu epsilon; method 3: 181.5 mu epsilon). No significant difference was found between splinting methods in combination with GC Pattern Resin (method 1: 173.8 mu epsilon; method 2: 112.6 mu epsilon; method 3: 105.4 mu epsilon). Conclusions: Because of the high microstrain generated, Duralay II should not be used for one-piece acrylic resin splinting, and separation and reconnection are suggested. For GC Pattern Resin, variations in splinting methods did not significantly affect the microstrain created. Int J Oral Maxillofac Implants 2012;27:341-345
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objectives: This study investigated the effect of porcelain firing on the misfit of implant-supported frameworks and analyzed the influence of preheat treatment on the dimensional alterations.Materials and Methods: Four external-hex cylindrical implants were placed in polyurethane block. Ten frameworks of screw-retained implant-supported prostheses were cast in Pd-Ag using 2 procedures: (1) control group (CG, n = 5): cast in segments and laser welded; and test group (TG, n = 5): cast in segments, preheated, and laser welded. All samples were subjected to firing to simulate porcelain veneering firing. Strain gauges were bonded around the implants, and microstrain values (mu epsilon = 10(-6)epsilon) were recorded after welding (M1), oxidation cycle (M2), and glaze firing (M3). Data were statistically analyzed (2-way analysis of variance, Bonferroni, alpha = 0.05).Results: The microstrain value in the CG at M3 (475.2 mu epsilon) was significantly different from the values observed at M1 (355.6 mu epsilon) and M2 (413.9 mu epsilon). The values at M2 and M3 in the CG were not statistically different. Microstrain values recorded at different moments (M1: 361.6 mu epsilon/M2: 335.3 mu epsilon/M3: 307.2 mu epsilon) did not show significant difference.Conclusions: The framework misfit deteriorates during firing cycles of porcelain veneering. Metal distortion after porcelain veneering could be controlled by preheat treatment. (Implant Dent 2012;21:225-229)
Resumo:
Purpose: The present study was designed to analyze strain distributions caused by varying the fixture-abutment design and fixture alignment.Materials and Methods: Three implants of external, internal hexagon, and Morse taper were embedded in the center of each polyurethane block in straight placement and offset placement. Four strain gauges (SGs) were bonded on the surface of polyurethane block, which was designated SG1 placed mesially adjacent to implant A, SG2 and SG3 were placed mesially and distally adjacent to the implant B and SG4 was placed distally adjacent to the implant C. The 30 superstructures' occlusal screws were tightened onto the Microunit abutments with a torque of 10 N cm using the manufacturers' manual torque-controlling device.Results: There were statistically significant differences in prosthetic connection (P value = 0.0074 < 0.5). There were no statistically significant differences in placement configuration/alignment (P value = 0.7812 > 0.5).Conclusion: The results showed fundamental differences in both conditions. There was no evidence that there was any advantage to offset implant placement in reducing the strain around implants. The results also revealed that the internal hexagon and Morse taper joints did not reduce the microstrain around implants. (Implant Dent 2011; 20:e24-e32)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: The aim of this in vitro study was to quantify strain development during axial and nonaxial loading using strain gauge analysis for three-element implant-supported FPDs, varying the arrangement of implants: straight line (L) and offset (O). Materials and Methods: Three Morse taper implants arranged in a straight line and three implants arranged in an offset configuration were inserted into two polyurethane blocks. Microunit abutments were screwed onto the implants, applying a 20 Ncm torque. Plastic copings were screwed onto the abutments, which received standard wax patterns cast in Co-Cr alloy (n = 10). Four strain gauges were bonded onto the surface of each block tangential to the implants. The occlusal screws of the superstructure were tightened onto microunit abutments using 10 Ncm and then axial and nonaxial loading of 30 Kg was applied for 10 seconds on the center of each implant and at 1 and 2 mm from the implants, totaling nine load application points. The microdeformations determined at the nine points were recorded by four strain gauges, and the same procedure was performed for all of the frameworks. Three loadings were made per load application point. The magnitude of microstrain on each strain gauge was recorded in units of microstrain (mu). The data were analyzed statistically by two-way ANOVA and Tukey's test (p < 0.05). Results: The configuration factor was statistically significant (p= 0.0004), but the load factor (p= 0.2420) and the interaction between the two factors were not significant (p= 0.5494). Tukey's test revealed differences between axial offset (mu) (183.2 +/- 93.64) and axial straight line (285.3 +/- 61.04) and differences between nonaxial 1 mm offset (201.0 +/- 50.24) and nonaxial 1 mm straight line (315.8 +/- 59.28). Conclusion: There was evidence that offset placement is capable of reducing the strain around an implant. In addition, the type of loading, axial force or nonaxial, did not have an influence until 2 mm.
Resumo:
OBJETIVO: a ancoragem óssea é fundamental para o sucesso do tratamento de algumas más oclusões, pois permite a aplicação de forças contínuas, diminui o tempo de tratamento e independe da colaboração do paciente. MÉTODOS: o propósito desse trabalho foi comparar, por meio de modelos dentários, a perda de ancoragem após a retração inicial de caninos superiores entre dois grupos. O grupo A utilizou o mini-implante enquanto o grupo B utilizou o Botão de Nance. Para todos os pacientes foram realizados dois modelos (M1 e M2). Os primeiros modelos foram realizados ao início (M1), e os outros ao final da retração inicial de canino (M2). RESULTADOS: todas as medidas foram tabuladas e submetidas à análise estatística. Para verificar o erro sistemático intraexaminador foi utilizado o teste t pareado. Na determinação do erro casual utilizou-se o cálculo de erro proposto por Dahlberg. Para comparação entre as fases Início e Após, foi utilizado o teste t pareado. Para a comparação entre os grupos de mini-implante e Botão de Nance, foi utilizado o teste t de Student para medidas independentes. em todos os testes foi adotado nível de significância de 5% (p<0,05). CONCLUSÃO: ao se medir e comparar em modelos dentários a perda de ancoragem dos molares após a retração inicial de canino utilizando-se dois sistemas de ancoragem distintos (Mini-implante e Botão de Nance), pôde-se observar a inexistência de diferença estatisticamente significativa entre os dois grupos.
Resumo:
OBJETIVO: Avaliar se existe crescimento compensatório pulmonar em transplante lobar e verificar se este crescimento é semelhante ao que ocorre após lobectomia. MÉTODOS: Foram utilizados 48 cães, distribuídos em 3 grupos (G1=controle, G2=lobectomia cranial esquerda e G3=pneumonectomia com reimplante do lobo caudal esquerdo). Após 5 meses da cirurgia, os animais foram submetidos à cintilografia pulmonar e a seguir sacrificados para estudo morfométrico pulmonar. RESULTADOS: Os resultados mostraram que não existe correlação da cintilografia nem com a massa nem com o volume do pulmão. Houve crescimento compensatório em massa e volume residual nos dois grupos operados, tanto no pulmão contralateral como no ipsilateral à cirurgia, não existindo até os 5 meses de estudo compensação em capacidade pulmonar total, nem em complacência pulmonar no lobo caudal remanescente do G2 e no lobo caudal reimplantado do G3, havendo maior prejuízo para o lobo reimplantado. Como estudos prévios mostram que o crescimento compensatório pulmonar se inicia com aumento da massa e do volume residual, e que a complacência é compensada posteriormente, este estudo parece ter documentado o início do crescimento compensatório, sendo a complacência pulmonar o fator limitante do crescimento compensatório após 5 meses de estudo. CONCLUSÃO: Conclui-se que existe crescimento compensatório tanto no lobo reimplantado como no pulmão contralateral, mas a complacência ainda encontra-se reduzida. O crescimento compensatório foi semelhante nos dois grupos, mas a complacência do lobo implantado está mais prejudicada.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Purpose: the aim of this study was to evaluate bone regeneration in bone cavities filled with particulate autogenous bone either harvest in blocks and subjected to milling procedures or collected during osteotomy with implant burs. Materials and Methods: In 12 rabbits, 3 noncritical unicortical cavities 7 mm in diameter were prepared with a trephine drill on the right tibia. The cavities were filled respectively with particulate autogenous bone achieved with a manual bone crusher ( particulate group), with particulate autogenous bone obtained using bone collector during osteotomy ( collected group), and with blood clot ( control group). Animals were sacrificed at 7, 15, and 30 days after surgery ( 4 animals for each time period). The sections were examined by histologic and histomorphometric analysis. Results: At 7 days, the samples were filled by coagulum, and bone particles were observed only in the collected (24%) and particulate groups (44.75%). At 15 days, there was connective differentiation in all groups, with presence of grafted bone particles and onset of newly formed bone in the collected (38.88%) and particulate groups (46.0%). At 30 days, there was bone fill ( immature trabecular bone) of the cavities in the control (50%), collected (64.63%) and particulate groups (66%). Conclusion: No significant difference was demonstrated between noncritical unicortical bone defects in rabbit tibiae filled with particulate bone harvested as a block and subjected to milling and those filled with bone collected during osteotomy with implant drills when the defects were observed up to 30 days following their creation.