966 resultados para Suspension Bridge
Resumo:
Référence bibliographique : Rol, 55121
Resumo:
Référence bibliographique : Rol, 55122
Resumo:
Of the approximately 25,000 bridges in Iowa, 28% are classified as structurally deficient, functionally obsolete, or both. The state of Iowa thus follows the national trend of an aging infrastructure in dire need of repair or replacement with a relatively limited funding base. Therefore, there is a need to develop new materials with properties that may lead to longer life spans and reduced life-cycle costs. In addition, new methods for determining the condition of structures are needed to monitor the structures effectively and identify when the useful life of the structure has expired or other maintenance is needed. High-performance steel (HPS) has emerged as a material with enhanced weldability, weathering capabilities, and fracture toughness compared to conventional structural steels. In 2004, the Iowa Department of Transportation opened Iowa's first HPS girder bridge, the East 12th Street Bridge over I-235 in Des Moines, Iowa. The objective of this project was to evaluate HPS as a viable option for use in Iowa bridges with a continuous structural health monitoring (SHM) system. The scope of the project included documenting the construction of the East 12th Street Bridge and concurrently developing a remote, continuous SHM system using fiber-optic sensing technology to evaluate the structural performance of the bridge. The SHM system included bridge evaluation parameters, similar to design parameters used by bridge engineers, for evaluating the structure. Through the successful completion of this project, a baseline of bridge performance was established that can be used for continued long-term monitoring of the structure. In general, the structural performance of the HPS bridge exceeded the design parameters and is performing well. Although some problems were encountered with the SHM system, the system functions well and recommendations for improving the system have been made.
Resumo:
Information concerning standard design practices and details for the Iowa Department of Transportation (IDOT) was provided to the research team. This was reviewed in detail so that the researchers would be familiar with the terminology and standard construction details. A comprehensive literature review was completed to gather information concerning constructability concepts applicable to bridges. It was determined that most of the literature deals with constructability as a general topic with only a limited amount of literature with specific concepts for bridge design and construction. Literature was also examined concerning the development of appropriate microcomputer databases. These activities represent completion of Task 1 as identified in the study.
Resumo:
Bridge expansion joints, if not properly designed, constructed, and maintained, often lead to the deterioration of critical substructure elements. Strip seal expansion joints consisting of a steel extrusion and neoprene gland are one type of expansion joint and are commonly used by the Iowa Department of Transportation (DOT). Strip seal expansion joints are susceptible to tears and pull outs that allow water, chlorides, and debris to infiltrate the joint, and subsequently the bearings below. One area of the strip seal that is particularly problematic is where it terminates at the interface between the deck and the barrier rail. The Iowa DOT has noted that the initial construction quality of the current strip seal termination detail is not satisfactory, nor ideal, and a need exists for re-evaluation and possibly re-design of this detail. Desirable qualities of a strip seal termination detail provide a seal that is simple and fast to construct, facilitate quick gland removal and installation, and provide a reliable, durable barrier to prevent chloride-contaminated water from reaching the substructure. To meet the objectives of this research project, several strip seal termination details were evaluated in the laboratory. Alternate termination details may not only function better than the current Iowa DOT standard, but are also less complicated to construct, facilitating better quality control. However, uncertainties still exist regarding the long-term effects of using straight-through details, with or without the dogleg, that could not be answered in the laboratory in the short time frame of the research project.
Resumo:
This report addresses the field testing and analysis of those results to establish the behavior of the original Clive Road Bridge that carried highway traffic over Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 1959, shortly after its construction and in 1993, just prior to its demolition. This report presents some of the results from both field tests, finite element predictions of the behavior of aluminum bridge girders, and load distribution studies.
Resumo:
As a result of the construction of the Saylorville Dam and Reservoir on the Des Moines River, six highway bridges crossing the river were scheduled for removal. One of these, an old pinconnected high-truss single-lane bridge, was selected for a testing program which included ultimate load tests. The purpose of the ultimate load tests, which are summarized in this report, was to relate design and rating procedures presently used in bridge design to the field behavior of this type of truss bridge. The ultimate load tests consisted of ultimate load testing of one span of the bridge, of two I-shaped floorbeams, and of two panels of the timber deck. The theoretical capacity of each of these components is compared with the results from the field tests.
Resumo:
The Iowa Department of Transportation used a high molecular weight methacrylate (HMWM) resin to seal a 3,340 ft. x 64 ft. bridge deck in October 1986. The sealing was necessary to prevent deicing salt brine from entering a substantial number of transverse cracks that coincided with the epoxy coated top steel and unprotected bottom steel. HMWM resin is a three component product composed of a monomer, a curnene hydroperoxide initiator and a cobalt naphthenate promoter. The HMWM was applied with a dual spray bar system and flat-fan nozzles. Initiated monomer delivered through one spray bar was mixed in the air with promoted monomer from the other spray bar. The application rate averaged 0.956 gallons per 100 square feet for the tined textured driving lanes. Dry sand was broadcast on the surface at an average coverage of 0.58 lbs. per square yard to maintain friction. Coring showed that the H.MWM resin penetrated the cracks more than two inches deep. Testing of the treated deck yielded Friction Numbers averaging 33 with a treaded tire compared to 36 prior to treatment. An inspection soon after treatment found five leaky cracks in one of the 15 spans. One inspection during a steady rain showed no leakage, but leakage from numerous cracks occurred during a subsequent rain. A second HMWM application was made on two spans to determine if a double application would prevent leakage. This evaluation has not been completed.
Resumo:
Use of bridge deck overlays is important in maximizing bridge service life. Overlays can replace the deteriorated part of the deck, thus extending the bridge life. Even though overlay construction avoids the construction of a whole new bridge deck, construction still takes significant time in re-opening the bridge to traffic. Current processes and practices are time-consuming and multiple opportunities may exist to reduce overall construction time by modifying construction requirements and/or materials utilized. Reducing the construction time could have an effect on reducing the socioeconomic costs associated with bridge deck rehabilitation and the inconvenience caused to travelers. This work included three major tasks with literature review, field investigation, and laboratory testing. Overlay concrete mix used for present construction takes long curing hours and therefore an investigation was carried out to find fast-curing concrete mixes that could reduce construction time. Several fast-cuing concrete mixes were found and suggested for further evaluation. An on-going overlay construction project was observed and documented. Through these observations, several opportunities were suggested where small modifications in the process could lead to significant time savings. With current standards of the removal depth of substrate concrete in Iowa, it takes long hours for the removal process. Four different laboratory tests were performed with different loading conditions to determine the necessary substrate concrete removal depth for a proper bond between the substrate concrete and the new overlay concrete. Several parameters, such as failure load, bond stress, and stiffness, were compared for four different concrete removal depths. Through the results and observations of this investigation several conclusions were made which could reduce bridge deck overlay construction time.
Resumo:
Four series of five specimens each were investigated for static and fatigue strength. These four series differed in that there were two variables, the first being the subsidence of concrete around reinforcing bars and the second being shrinkage due to two different curing conditions. The combinations of these variables were then compared to each other by use of, load-deflection curves and S-H fatigue curves.
Resumo:
In 1957, the Iowa State Highway Commission, with financial assistance from the aluminum industry, constructed a 220-ft (67-m) long, four-span continuous, aluminum girder bridge to carry traffic on Clive Road (86th Street) over Interstate 80 near Des Moines, Iowa. The bridge had four, welded I-shape girders that were fabricated in pairs with welded diaphragms between an exterior and an interior girder. The interior diaphragms between the girder pairs were bolted to girder brackets. A composite, reinforced concrete deck served as the roadway surface. The bridge, which had performed successfully for about 35 years of service, was removed in the fall of 1993 to make way for an interchange at the same location. Prior to the bridge demolition, load tests were conducted to monitor girder and diaphragm bending strains and deflections in the northern end span. Fatigue testing of the aluminum girders that were removed from the end spans were conducted by applying constant-amplitude, cyclic loads. These tests established the fatigue strength of an existing, welded, flange-splice detail and added, welded, flange-cover plates and horizontal web plate attachment details. This part, Part 2, of the final report focuses on the fatigue tests of the aluminum girder sections that were removed from the bridge and on the analysis of the experimental data to establish the fatigue strength of full-size specimens. Seventeen fatigue fractures that were classified as Category E weld details developed in the seven girder test specimens. Linear regression analyses of the fatigue test results established both nominal and experimental stress-range versus load cycle relationships (SN curves) for the fatigue strength of fillet-welded connections. The nominal strength SN curve obtained by this research essentially matched the SN curve for Category E aluminum weldments given in the AASHTO LRFD specifications. All of the Category E fatigue fractures that developed in the girder test specimens satisfied the allowable SN relationship specified by the fatigue provisions of the Aluminum Association. The lower-bound strength line that was set at two standard deviations below the least squares regression line through the fatigue fracture data points related well with the Aluminum Association SN curve. The results from the experimental tests of this research have provided additional information regarding behavioral characteristics of full-size, aluminum members and have confirmed that aluminum has the strength properties needed for highway bridge girders.
Resumo:
Les collectivités d'enfants, comme les écoles, mettent en contact de nombreuses personnes dans un espace restreint. Cette proximité peut favoriser la transmission croisée de micro-organismes infectieux. Les épidémies de varicelle, conjonctivite virale, rougeole et gastro-entérite, et la transmission de parasites comme les poux sont fréquentes dans les établissements scolaires et affectent les enfants et le personnel encadrant dont les enseignants. Ce risque professionnel est souvent négligé car considéré comme inévitable. À côté des risques infectieux, d'autres risques liés à des micro-organismes environnementaux et à leurs constituants comme les endotoxines peuvent exister. Ainsi, des études ont montré que les concentrations aéroportées de particules à l'intérieur des classes d'école étaient plus élevées qu'à l'extérieur (1) et que leur composition chimique était différente (2). Plusieurs études épidémiologiques ont montré un lien clair entre l'exposition à des particules et différents problèmes de santé notamment des problèmes respiratoires et cardiaques. Cette exposition à des particules en suspension dans l'air peut avoir des effets toxiques sur les cellules épithéliales des voies respiratoires. Deux études récentes menées dans des écoles et portant sur les particules aéroportées sont analysées ci-dessous. La première étude a évalué les effets biologiques in vitro de particules collectées dans des classes d'écoles en Allemagne et la seconde étude a mesuré les concentrations aéroportées de différents indicateurs de la qualité de l'air dont les micro-organismes dans des écoles au Portugal.
Resumo:
BACKGROUND: Recently, a compact cardiopulmonary support (CPS) system designed for quick set-up for example, during emergency cannulation, has been introduced. Traditional rectilinear percutaneous cannulas are standard for remote vascular access with the original design. The present study was designed to assess the potential of performance increase by the introduction of next-generation, self-expanding venous cannulas, which can take advantage of the luminal width of the venous vasculature despite a relatively small access orifice. METHODS: Veno-arterial bypass was established in three bovine experiments (69+/-10 kg). The Lifebridge (Lifebridge GmbH, Munich, Germany) system was connected to the right atrium in a trans-jugular fashion with various venous cannulas; and the oxygenated blood was returned through the carotid artery with a 17 F percutaneous cannula. Two different venous cannulas were studied, and the correlation between the centrifugal pump speed (1500-3900 RPM), flow and the required negative pressure on the venous side was established: (A) Biomedicus 19 F (Medtronic, Tolochenaz, Switzerland); (B) Smart canula 18 F/36 F (Smartcanula LLC, Lausanne, Switzerland). RESULTS: At 1500 RPM, the blood flow was 0.44+/-0.26 l min(-1) for the 19 F rectilinear cannula versus 0.73+/-0.34 l min(-1) for the 18/36 F self-expanding cannula. At 2500 RPM the blood flow was 1.63+/-0.62 l min(-1) for the 19F rectilinear cannula versus 2.13+/-0.34 l min(-1) for the 18/36 F self-expanding cannula. At 3500 RPM, the blood flow was 2.78+/-0.47 l min(-1) for the 19 F rectilinear cannula versus 3.64+/-0.39 l min(-1) for the 18/36 F self-expanding cannula (p<0.01 for 18/36 F vs 19 F). At 1500 RPM, the venous line pressure was 18+/-8 mmHg for the 19F rectilinear cannula versus 19+/-5 mmHg for the 18/36 F self-expanding cannula. At 2500 RPM the venous line pressure accounted for -22+/-32 mmHg for the 19 F rectilinear cannula versus 2+/-5 mmHg for the 18/36 F self-expanding cannula. At 3500 RPM, the venous line pressure was -112+/-42 mmHg for the rectilinear cannula versus 28+/-7 mmHg for the 18/36 F self-expanding cannula (p<0.01 for 18 F/36 F vs 19 F). Conclusions: The negative pressure required to achieve adequate venous drainage with the self-expanding venous cannula accounts for approximately 31% of the pressure necessary with the 19 F rectilinear cannula. In addition, a pump flow of more than 4 l min(-1) can be achieved with the self-expanding design and a well-accepted negative inlet pressure for minimal blood trauma of less than 50 mmHg.
Resumo:
Le but essentiel de notre travail a été d?étudier la capacité du foie, premier organe de métabolisation des xénobiotiques, à dégrader la cocaïne en présence d?éthanol, à l?aide de deux modèles expérimentaux, à savoir un modèle cellulaire (les hépatocytes de rat en suspension) et un modèle acellulaire (modèle reconstitué in vitro à partir d?enzymes purifiées de foie humain). La première partie a pour objectifs de rechercher les voies de métabolisation de la cocaïne qui sont inhibées et / ou stimulées en présence d?éthanol, sur hépatocytes isolés de rat. Dans ce but, une méthode originale permettant de séparer et de quantifier simultanément la cocaïne, le cocaéthylène et huit de leurs métabolites respectifs a été développée par Chromatographie Phase Gazeuse couplée à la Spectrométrie de Masse (CPG / SM). Nos résultats préliminaires indiquent que l?éthanol aux trois concentrations testées (20, 40 et 80 mM) n?a aucun effet sur la cinétique de métabolisation de la cocaïne. Notre étude confirme que l?addition d?éthanol à des cellules hépatiques de rat en suspension supplémentées en cocaïne résulte en la formation précoce de benzoylecgonine et de cocaéthylène. L?apparition retardée d?ecgonine méthyl ester démontre l?activation d?une deuxième voie de détoxification. La production tardive d?ecgonine indique une dégradation de la benzoylecgonine et de l?ecgonine méthyl ester. De plus, la voie d?oxydation intervenant dans l?induction du stress oxydant en produisant de la norcocaïne est tardivement stimulée. Enfin, notre étude montre une métabolisation complète de la concentration initiale en éthanol par les hépatocytes de rat en suspension. La deuxième partie a pour but de déterminer s?il existe d?autres enzymes que les carboxylesterases formes 1 et 2 humaines ayant une capacité à métaboliser la cocaïne seule ou associée à de l?éthanol. Pour ce faire, une méthode de micropurification par chromatographie liquide (Smart System®) a été mise au point. Dans le cadre de nos dosages in situ de la cocaïne, du cocaéthylène, de la benzoylecgonine, de l?acide benzoïque et de la lidocaïne, une technique par Chromatographie Liquide Haute Performance couplée à une Détection par Barrette de Diode (CLHP / DBD) et une méthode de dosage de l?éthanol par Chromatographie Phase Gazeuse couplée à une Détection par Ionisation de Flamme équipée d?un injecteur à espace de tête (espace de tête CPG / DIF) ont été développées. La procédure de purification nous a permis de suspecter la présence d?autres enzymes que les carboxylesterases formes 1 et 2 de foie humain impliquées dans le métabolisme de la cocaïne et déjà isolées. A partir d?un modèle enzymatique reconstitué in vitro, nos résultats préliminaires indiquent que d?autres esterases que les formes 1 et 2 de foie humain sont impliquées dans l?élimination de la cocaïne, produisant benzoylecgonine et ecgonine méthyl ester. De plus, nous avons montré que les sensibilités de ces enzymes à l?éthanol sont variables.<br/><br/>The main purpose of our work was to study the ability of the liver, as the first organ to metabolise xenobiotic substances, to degrade cocaine in the presence of ethanol. In order to do this, we used two experimental models, namely a cellular model (rat liver cells in suspension) and an a-cellular model (model reconstructed in vitro from purified human liver enzymes). The purpose of the first part of our study was to look for cocaine metabolising processes which were inhibited and / or stimulated by the presence of ethanol, in isolated rat liver cells. With this aim in mind, an original method for simultaneously separating and quantifying cocaine, cocaethylene and eight of their respective metabolites was developed by Vapour Phase Chromatography coupled with Mass Spectrometry (VPC / MS). Our preliminary results point out that ethanol at three tested concentrations (20, 40 et 80 mM) have no effect on the kinetic of metabolisation of cocaine. Our study confirms that the addition of alcohol to rat liver cells in suspension, supplemented with cocaine, results in the premature formation of ecgonine benzoyl ester and cocaethylene. The delayed appearance of ecgonine methyl ester shows that a second detoxification process is activated. The delayed production of ecgonine indicates a degradation of the ecgonine benzoyl ester and the ecgonine methyl ester. Moreover, the oxidising process which occurs during the induction of the oxidising stress, producing norcocaine, is stimulated at a late stage. Finally, our study shows the complete metabolisation of the initial alcohol concentration by the rat liver cells in suspension. The second part consisted in determining if enzymes other than human carboxylesterases 1 and 2, able to metabolise cocaine on its own or with alcohol, existed. To do this, a micropurification method us ing liquid phase chromatography (Smart System®) was developed. A technique based on High Performance Liquid Chromatography coupled with a Diode Array Detection (HPLC / DAD) in the in situ proportioning of cocaine, cocaethylene, ecgonine benzoyl ester, benzoic acid and lidocaine, and a method for proportioning alcohol by quantifying the head space using Vapour Phase Chromatography coupled with a Flame Ionisation Detection (head space VPC / FID) were used. The purification procedure pointed to the presence of enzymes other than the human liver carboxylesterases, forms 1 and 2, involved in the metabolism of cocaine and already isolated. The preliminary results drawn from an enzymatic model reconstructed in vitro indicate that human liver carboxylesterases, other than forms 1 and 2, are involved in the elimination of cocaine, producing ecgonine benzoyl ester and ecgonine methyl ester. Moreover, we have shown that the sensitivity of these enzymes to alcohol is variable.
Resumo:
The purpose of this study was to investigate some important features of granular flows and suspension flows by computational simulation methods. Granular materials have been considered as an independent state ofmatter because of their complex behaviors. They sometimes behave like a solid, sometimes like a fluid, and sometimes can contain both phases in equilibrium. The computer simulation of dense shear granular flows of monodisperse, spherical particles shows that the collisional model of contacts yields the coexistence of solid and fluid phases while the frictional model represents a uniform flow of fluid phase. However, a comparison between the stress signals from the simulations and experiments revealed that the collisional model would result a proper match with the experimental evidences. Although the effect of gravity is found to beimportant in sedimentation of solid part, the stick-slip behavior associated with the collisional model looks more similar to that of experiments. The mathematical formulations based on the kinetic theory have been derived for the moderatesolid volume fractions with the assumption of the homogeneity of flow. In orderto make some simulations which can provide such an ideal flow, the simulation of unbounded granular shear flows was performed. Therefore, the homogeneous flow properties could be achieved in the moderate solid volume fractions. A new algorithm, namely the nonequilibrium approach was introduced to show the features of self-diffusion in the granular flows. Using this algorithm a one way flow can beextracted from the entire flow, which not only provides a straightforward calculation of self-diffusion coefficient but also can qualitatively determine the deviation of self-diffusion from the linear law at some regions nearby the wall inbounded flows. Anyhow, the average lateral self-diffusion coefficient, which was calculated by the aforementioned method, showed a desirable agreement with thepredictions of kinetic theory formulation. In the continuation of computer simulation of shear granular flows, some numerical and theoretical investigations were carried out on mass transfer and particle interactions in particulate flows. In this context, the boundary element method and its combination with the spectral method using the special capabilities of wavelets have been introduced as theefficient numerical methods to solve the governing equations of mass transfer in particulate flows. A theoretical formulation of fluid dispersivity in suspension flows revealed that the fluid dispersivity depends upon the fluid properties and particle parameters as well as the fluid-particle and particle-particle interactions.