994 resultados para Stochastic Matrix
Resumo:
Welcome to the Evaluation of course matrix. This matrix is designed for highly qualified discipline experts to evaluate their course, major or unit in a systemic manner. The primary purpose of the Evaluation of course matrix is to provide a tool that a group of academic staff at universities can collaboratively review the assessment within a course, major or unit annually. The annual review will result in you being ready for an external curricula review at any point in time. This tool is designed for use in a workshop format with one, two or more academic staff, and will lead to an action plan for implementation. I hope you find this tool useful in your assessment review.
Resumo:
In this paper we propose a novel approach to multi-action recognition that performs joint segmentation and classification. This approach models each action using a Gaussian mixture using robust low-dimensional action features. Segmentation is achieved by performing classification on overlapping temporal windows, which are then merged to produce the final result. This approach is considerably less complicated than previous methods which use dynamic programming or computationally expensive hidden Markov models (HMMs). Initial experiments on a stitched version of the KTH dataset show that the proposed approach achieves an accuracy of 78.3%, outperforming a recent HMM-based approach which obtained 71.2%.
Resumo:
Wound healing and tumour growth involve collective cell spreading, which is driven by individual motility and proliferation events within a population of cells. Mathematical models are often used to interpret experimental data and to estimate the parameters so that predictions can be made. Existing methods for parameter estimation typically assume that these parameters are constants and often ignore any uncertainty in the estimated values. We use approximate Bayesian computation (ABC) to estimate the cell diffusivity, D, and the cell proliferation rate, λ, from a discrete model of collective cell spreading, and we quantify the uncertainty associated with these estimates using Bayesian inference. We use a detailed experimental data set describing the collective cell spreading of 3T3 fibroblast cells. The ABC analysis is conducted for different combinations of initial cell densities and experimental times in two separate scenarios: (i) where collective cell spreading is driven by cell motility alone, and (ii) where collective cell spreading is driven by combined cell motility and cell proliferation. We find that D can be estimated precisely, with a small coefficient of variation (CV) of 2–6%. Our results indicate that D appears to depend on the experimental time, which is a feature that has been previously overlooked. Assuming that the values of D are the same in both experimental scenarios, we use the information about D from the first experimental scenario to obtain reasonably precise estimates of λ, with a CV between 4 and 12%. Our estimates of D and λ are consistent with previously reported values; however, our method is based on a straightforward measurement of the position of the leading edge whereas previous approaches have involved expensive cell counting techniques. Additional insights gained using a fully Bayesian approach justify the computational cost, especially since it allows us to accommodate information from different experiments in a principled way.
Resumo:
The efficient computation of matrix function vector products has become an important area of research in recent times, driven in particular by two important applications: the numerical solution of fractional partial differential equations and the integration of large systems of ordinary differential equations. In this work we consider a problem that combines these two applications, in the form of a numerical solution algorithm for fractional reaction diffusion equations that after spatial discretisation, is advanced in time using the exponential Euler method. We focus on the efficient implementation of the algorithm on Graphics Processing Units (GPU), as we wish to make use of the increased computational power available with this hardware. We compute the matrix function vector products using the contour integration method in [N. Hale, N. Higham, and L. Trefethen. Computing Aα, log(A), and related matrix functions by contour integrals. SIAM J. Numer. Anal., 46(5):2505–2523, 2008]. Multiple levels of preconditioning are applied to reduce the GPU memory footprint and to further accelerate convergence. We also derive an error bound for the convergence of the contour integral method that allows us to pre-determine the appropriate number of quadrature points. Results are presented that demonstrate the effectiveness of the method for large two-dimensional problems, showing a speedup of more than an order of magnitude compared to a CPU-only implementation.
Resumo:
The matrix of volcaniclastic kimberlite (VK) from the Muskox pipe (Northern Slave Province, Nunavut, Canada) is interpreted to represent an overprint of an original clastic matrix. Muskox VK is subdivided into three different matrix mineral assemblages that reflect differences in the proportions of original primary matrix constituents, temperature of formation and nature of the altering fluids. Using whole rock X-ray fluorescence (XRF), whole rock X-ray diffraction (XRD), microprobe analyses, back-scatter electron (BSE) imaging, petrography and core logging, we find that most matrix minerals (serpentine, phlogopite, chlorite, saponite, monticellite, Fe-Ti oxides and calcite) lack either primary igneous or primary clastic textures. The mineralogy and textures are most consistent with formation through alteration overprinting of an original clastic matrix that form by retrograde reactions as the deposit cools, or, in the case of calcite, by precipitation from Ca-bearing fluids into a secondary porosity. The first mineral assemblage consists largely of serpentine, phlogopite, calcite, Fe-Ti oxides and monticellite and occurs in VK with relatively fresh framework clasts. Alteration reactions, driven by deuteric fluids derived from the juvenile constituents, promote the crystallisation of minerals that indicate relatively high temperatures of formation (> 400 °C). Lower-temperature minerals are not present because permeability was occluded before the deposit cooled to low temperatures, thus shielding the facies from further interaction with fluids. The other two matrix mineral assemblages consist largely of serpentine, phlogopite, calcite, +/- diopside, and +/- chlorite. They form in VK that contains more country rock, which may have caused the deposit to be cooler upon emplacement. Most framework components are completely altered, suggesting that larger volumes of fluids drove the alteration reactions. These fluids were likely of meteoric provenance and became heated by the volcaniclastic debris when they percolated into the VK infill. Most alteration reactions ceased at temperatures > 200 °C, as indicated by the absence or paucity of lower-temperature phases in most samples, such as saponite. Recognition that Muskox VK contains an original clastic matrix is a necessary first step for evaluating the textural configuration, which is important for reconstructing the physical processes responsible for the formation of the deposit.
Resumo:
This paper presents an uncertainty quantification study of the performance analysis of the high pressure ratio single stage radial-inflow turbine used in the Sundstrand Power Systems T-100 Multi-purpose Small Power Unit. A deterministic 3D volume-averaged Computational Fluid Dynamics (CFD) solver is coupled with a non-statistical generalized Polynomial Chaos (gPC) representation based on a pseudo-spectral projection method. One of the advantages of this approach is that it does not require any modification of the CFD code for the propagation of random disturbances in the aerodynamic and geometric fields. The stochastic results highlight the importance of the blade thickness and trailing edge tip radius on the total-to-static efficiency of the turbine compared to the angular velocity and trailing edge tip length. From a theoretical point of view, the use of the gPC representation on an arbitrary grid also allows the investigation of the sensitivity of the blade thickness profiles on the turbine efficiency. The gPC approach is also applied to coupled random parameters. The results show that the most influential coupled random variables are trailing edge tip radius coupled with the angular velocity.
Resumo:
Genetic correlation (rg) analysis determines how much of the correlation between two measures is due to common genetic influences. In an analysis of 4 Tesla diffusion tensor images (DTI) from 531 healthy young adult twins and their siblings, we generalized the concept of genetic correlation to determine common genetic influences on white matter integrity, measured by fractional anisotropy (FA), at all points of the brain, yielding an NxN genetic correlation matrix rg(x,y) between FA values at all pairs of voxels in the brain. With hierarchical clustering, we identified brain regions with relatively homogeneous genetic determinants, to boost the power to identify causal single nucleotide polymorphisms (SNP). We applied genome-wide association (GWA) to assess associations between 529,497 SNPs and FA in clusters defined by hubs of the clustered genetic correlation matrix. We identified a network of genes, with a scale-free topology, that influences white matter integrity over multiple brain regions.
Resumo:
Modelling fluvial processes is an effective way to reproduce basin evolution and to recreate riverbed morphology. However, due to the complexity of alluvial environments, deterministic modelling of fluvial processes is often impossible. To address the related uncertainties, we derive a stochastic fluvial process model on the basis of the convective Exner equation that uses the statistics (mean and variance) of river velocity as input parameters. These statistics allow for quantifying the uncertainty in riverbed topography, river discharge and position of the river channel. In order to couple the velocity statistics and the fluvial process model, the perturbation method is employed with a non-stationary spectral approach to develop the Exner equation as two separate equations: the first one is the mean equation, which yields the mean sediment thickness, and the second one is the perturbation equation, which yields the variance of sediment thickness. The resulting solutions offer an effective tool to characterize alluvial aquifers resulting from fluvial processes, which allows incorporating the stochasticity of the paleoflow velocity.
Resumo:
In this paper, we introduce the Stochastic Adams-Bashforth (SAB) and Stochastic Adams-Moulton (SAM) methods as an extension of the tau-leaping framework to past information. Using the theta-trapezoidal tau-leap method of weak order two as a starting procedure, we show that the k-step SAB method with k >= 3 is order three in the mean and correlation, while a predictor-corrector implementation of the SAM method is weak order three in the mean but only order one in the correlation. These convergence results have been derived analytically for linear problems and successfully tested numerically for both linear and non-linear systems. A series of additional examples have been implemented in order to demonstrate the efficacy of this approach.
Resumo:
Stochastic (or random) processes are inherent to numerous fields of human endeavour including engineering, science, and business and finance. This thesis presents multiple novel methods for quickly detecting and estimating uncertainties in several important classes of stochastic processes. The significance of these novel methods is demonstrated by employing them to detect aircraft manoeuvres in video signals in the important application of autonomous mid-air collision avoidance.
Resumo:
Background Biochemical systems with relatively low numbers of components must be simulated stochastically in order to capture their inherent noise. Although there has recently been considerable work on discrete stochastic solvers, there is still a need for numerical methods that are both fast and accurate. The Bulirsch-Stoer method is an established method for solving ordinary differential equations that possesses both of these qualities. Results In this paper, we present the Stochastic Bulirsch-Stoer method, a new numerical method for simulating discrete chemical reaction systems, inspired by its deterministic counterpart. It is able to achieve an excellent efficiency due to the fact that it is based on an approach with high deterministic order, allowing for larger stepsizes and leading to fast simulations. We compare it to the Euler τ-leap, as well as two more recent τ-leap methods, on a number of example problems, and find that as well as being very accurate, our method is the most robust, in terms of efficiency, of all the methods considered in this paper. The problems it is most suited for are those with increased populations that would be too slow to simulate using Gillespie’s stochastic simulation algorithm. For such problems, it is likely to achieve higher weak order in the moments. Conclusions The Stochastic Bulirsch-Stoer method is a novel stochastic solver that can be used for fast and accurate simulations. Crucially, compared to other similar methods, it better retains its high accuracy when the timesteps are increased. Thus the Stochastic Bulirsch-Stoer method is both computationally efficient and robust. These are key properties for any stochastic numerical method, as they must typically run many thousands of simulations.
Resumo:
Since we still know very little about stem cells in their natural environment, it is useful to explore their dynamics through modelling and simulation, as well as experimentally. Most models of stem cell systems are based on deterministic differential equations that ignore the natural heterogeneity of stem cell populations. This is not appropriate at the level of individual cells and niches, when randomness is more likely to affect dynamics. In this paper, we introduce a fast stochastic method for simulating a metapopulation of stem cell niche lineages, that is, many sub-populations that together form a heterogeneous metapopulation, over time. By selecting the common limiting timestep, our method ensures that the entire metapopulation is simulated synchronously. This is important, as it allows us to introduce interactions between separate niche lineages, which would otherwise be impossible. We expand our method to enable the coupling of many lineages into niche groups, where differentiated cells are pooled within each niche group. Using this method, we explore the dynamics of the haematopoietic system from a demand control system perspective. We find that coupling together niche lineages allows the organism to regulate blood cell numbers as closely as possible to the homeostatic optimum. Furthermore, coupled lineages respond better than uncoupled ones to random perturbations, here the loss of some myeloid cells. This could imply that it is advantageous for an organism to connect together its niche lineages into groups. Our results suggest that a potential fruitful empirical direction will be to understand how stem cell descendants communicate with the niche and how cancer may arise as a result of a failure of such communication.
Resumo:
Background Matrix metalloproteinase-2 (MMP-2) is an endopeptidase that facilitates extracellular matrix remodeling and molecular regulation, and is implicated in tumor metastasis. Type I collagen (Col I) regulates the activation of MMP-2 through both transcriptional and post-transcriptional means; however gaps remain in our understanding of the involvement of collagen-binding ?1 integrins in collagen-stimulated MMP-2 activation. Methods Three ?1 integrin siRNAs were used to elucidate the involvement of ?1 integrins in the Col I-induced MMP-2 activation mechanism. ?1 integrin knockdown was analyzed by quantitative RT-PCR, Western Blot and FACS analysis. Adhesion assay and collagen gel contraction were used to test the biological effects of ?1 integrin abrogation. MMP-2 activation levels were monitored by gelatin zymography. Results All three ?1 integrin siRNAs were efficient at ?1 integrin knockdown and FACS analysis revealed commensurate reductions of integrins ?2 and ?3, which are heterodimeric partners of ?1, but not ?V, which is not. All three ?1 integrin siRNAs inhibited adhesion and collagen gel contraction, however only the siRNA showing the greatest magnitude of ?1 knockdown inhibited Col I-induced MMP-2 activation and reduced the accompanying upregulation of MT1-MMP, suggesting a dose response threshold effect. Re-transfection with codon-swapped ?1 integrin overcame the reduction in MMP-2 activation induced by Col-1, confirming the ?1 integrin target specificity. MMP-2 activation induced by TPA or Concanavalin A (Con A) was not inhibited by ?1 integrin siRNA knockdown. Conclusion Together, the data reveals that strong abrogation of ?1 integrin is required to block MMP-2 activation induced by Col I, which may have implications for the therapeutic targeting of ?1 integrin.