934 resultados para Single-step
Resumo:
Aim of this thesis was the production of porosity-graded piezoelectric ceramics for ultrasonic applications by tape casting and screen printing. The study and optimization of each single step of the tape casting process allowed to produce flat and crack-free multilayers of Pb0.988(Zr0.52Ti0.48)0.976Nb0.024O3 (PZTN) of uniform and graded porosity. The multilayers of thickness ranging between 400 and 800 µm were produced stacking optimized green layers with different amount of pore former. The functionally graded materials showed porosity ranging between 10 and 30% with piezoelectric properties suitable for the specific ultrasonic applications. Screen printing inks of PZTN for deposition onto four different substrates were studied and optimized. Thick films with thickness ranging between 4 and 20 µm were produced tailoring the screen printing parameters and number of depositions.
Resumo:
The quark condensate is a fundamental free parameter of Chiral Perturbation Theory ($chi PT$), since it determines the relative size of the mass and momentum terms in the power expansion. In order to confirm or contradict the assumption of a large quark condensate, on which $chi PT$ is based, experimental tests are needed. In particular, the $S$-wave $pipi$ scattering lengths $a_0^0$ and $a_0^2$ can be predicted precisely within $chi PT$ as a function of this parameter and can be measured very cleanly in the decay $K^{pm} to pi^{+} pi^{-} e^{pm} stackrel{mbox{tiny(---)}}{nu_e}$ ($K_{e4}$). About one third of the data collected in 2003 and 2004 by the NA48/2 experiment were analysed and 342,859 $K_{e4}$ candidates were selected. The background contamination in the sample could be reduced down to 0.3% and it could be estimated directly from the data, by selecting events with the same signature as $K_{e4}$, but requiring for the electron the opposite charge with respect to the kaon, the so-called ``wrong sign'' events. This is a clean background sample, since the kaon decay with $Delta S=-Delta Q$, that would be the only source of signal, can only take place through two weak decays and is therefore strongly suppressed. The Cabibbo-Maksymowicz variables, used to describe the kinematics of the decay, were computed under the assumption of a fixed kaon momentum of 60 GeV/$c$ along the $z$ axis, so that the neutrino momentum could be obtained without ambiguity. The measurement of the form factors and of the $pipi$ scattering length $a_0^0$ was performed in a single step by comparing the five-dimensional distributions of data and MC in the kinematic variables. The MC distributions were corrected in order to properly take into account the trigger and selection efficiencies of the data and the background contamination. The following parameter values were obtained from a binned maximum likelihood fit, where $a_0^2$ was expressed as a function of $a_0^0$ according to the prediction of chiral perturbation theory: f'_s/f_s = 0.133+- 0.013(stat)+- 0.026(syst) f''_s/f_s = -0.041+- 0.013(stat)+- 0.020(syst) f_e/f_s = 0.221+- 0.051(stat)+- 0.105(syst) f'_e/f_s = -0.459+- 0.170(stat)+- 0.316(syst) tilde{f_p}/f_s = -0.112+- 0.013(stat)+- 0.023(syst) g_p/f_s = 0.892+- 0.012(stat)+- 0.025(syst) g'_p/f_s = 0.114+- 0.015(stat)+- 0.022(syst) h_p/f_s = -0.380+- 0.028(stat)+- 0.050(syst) a_0^0 = 0.246+- 0.009(stat)+- 0.012(syst)}+- 0.002(theor), where the statistical uncertainty only includes the effect of the data statistics and the theoretical uncertainty is due to the width of the allowed band for $a_0^2$.
Resumo:
Here, we present the adaptation and optimization of (i) the solvothermal and (ii) the metal-organic chemical vapor deposition (MOCVD) approach as simple methods for the high-yield synthesis of MQ2 (M=Mo, W, Zr; Q = O, S) nanoparticles. Extensive characterization was carried out using X-ray diffraction (XRD), scanning and transmission electron micros¬copy (SEM/TEM) combined with energy dispersive X-ray analysis (EDXA), Raman spectroscopy, thermal analyses (DTA/TG), small angle X-ray scattering (SAXS) and BET measurements. After a general introduction to the state of the art, a simple route to nanostructured MoS2 based on the decomposition of the cluster-based precursor (NH4)2Mo3S13∙xH2O under solvothermal conditions (toluene, 653 K) is presented. Solvothermal decomposition results in nanostructured material that is distinct from the material obtained by decomposition of the same precursor in sealed quartz tubes at the same temperature. When carried out in the presence of the surfactant cetyltrimethyl¬ammonium bromide (CTAB), the decomposition product exhibits highly disordered MoS2 lamellae with high surface areas. The synthesis of WS2 onion-like nanoparticles by means of a single-step MOCVD process is discussed. Furthermore, the results of the successful transfer of the two-step MO¬CVD based synthesis of MoQ2 nanoparticles (Q = S, Se), comprising the formation of amorphous precursor particles and followed by the formation of fullerene-like particles in a subsequent annealing step to the W-S system, are presented. Based on a study of the temperature dependence of the reactions a set of conditions for the formation of onion-like structures in a one-step reaction could be derived. The MOCVD approach allows a selective synthesis of open and filled fullerene-like chalcogenide nanoparticles. An in situ heating stage transmission electron microscopy (TEM) study was employed to comparatively investigate the growth mechanism of MoS2 and WS2 nanoparticles obtained from MOCVD upon annealing. Round, mainly amorphous particles in the pristine sample trans¬form to hollow onion-like particles upon annealing. A significant difference between both compounds could be demonstrated in their crystallization conduct. Finally, the results of the in situ hea¬ting experiments are compared to those obtained from an ex situ annealing process under Ar. Eventually, a low temperature synthesis of monodisperse ZrO2 nanoparticles with diameters of ~ 8 nm is introduced. Whereas the solvent could be omitted, the synthesis in an autoclave is crucial for gaining nano-sized (n) ZrO2 by thermal decomposition of Zr(C2O4)2. The n-ZrO2 particles exhibits high specific surface areas (up to 385 m2/g) which make them promising candidates as catalysts and catalyst supports. Co-existence of m- and t-ZrO2 nano-particles of 6-9 nm in diameter, i.e. above the critical particle size of 6 nm, demonstrates that the particle size is not the only factor for stabilization of the t-ZrO2 modification at room temperature. In conclusion, synthesis within an autoclave (with and without solvent) and the MOCVD process could be successfully adapted to the synthesis of MoS2, WS2 and ZrO2 nanoparticles. A comparative in situ heating stage TEM study elucidated the growth mechanism of MoS2 and WS2 fullerene-like particles. As the general processes are similar, a transfer of this synthesis approach to other layered transition metal chalcogenide systems is to be expected. Application of the obtained nanomaterials as lubricants (MoS2, WS2) or as dental filling materials (ZrO2) is currently under investigation.
Resumo:
Synthetic Biology is a relatively new discipline, born at the beginning of the New Millennium, that brings the typical engineering approach (abstraction, modularity and standardization) to biotechnology. These principles aim to tame the extreme complexity of the various components and aid the construction of artificial biological systems with specific functions, usually by means of synthetic genetic circuits implemented in bacteria or simple eukaryotes like yeast. The cell becomes a programmable machine and its low-level programming language is made of strings of DNA. This work was performed in collaboration with researchers of the Department of Electrical Engineering of the University of Washington in Seattle and also with a student of the Corso di Laurea Magistrale in Ingegneria Biomedica at the University of Bologna: Marilisa Cortesi. During the collaboration I contributed to a Synthetic Biology project already started in the Klavins Laboratory. In particular, I modeled and subsequently simulated a synthetic genetic circuit that was ideated for the implementation of a multicelled behavior in a growing bacterial microcolony. In the first chapter the foundations of molecular biology are introduced: structure of the nucleic acids, transcription, translation and methods to regulate gene expression. An introduction to Synthetic Biology completes the section. In the second chapter is described the synthetic genetic circuit that was conceived to make spontaneously emerge, from an isogenic microcolony of bacteria, two different groups of cells, termed leaders and followers. The circuit exploits the intrinsic stochasticity of gene expression and intercellular communication via small molecules to break the symmetry in the phenotype of the microcolony. The four modules of the circuit (coin flipper, sender, receiver and follower) and their interactions are then illustrated. In the third chapter is derived the mathematical representation of the various components of the circuit and the several simplifying assumptions are made explicit. Transcription and translation are modeled as a single step and gene expression is function of the intracellular concentration of the various transcription factors that act on the different promoters of the circuit. A list of the various parameters and a justification for their value closes the chapter. In the fourth chapter are described the main characteristics of the gro simulation environment, developed by the Self Organizing Systems Laboratory of the University of Washington. Then, a sensitivity analysis performed to pinpoint the desirable characteristics of the various genetic components is detailed. The sensitivity analysis makes use of a cost function that is based on the fraction of cells in each one of the different possible states at the end of the simulation and the wanted outcome. Thanks to a particular kind of scatter plot, the parameters are ranked. Starting from an initial condition in which all the parameters assume their nominal value, the ranking suggest which parameter to tune in order to reach the goal. Obtaining a microcolony in which almost all the cells are in the follower state and only a few in the leader state seems to be the most difficult task. A small number of leader cells struggle to produce enough signal to turn the rest of the microcolony in the follower state. It is possible to obtain a microcolony in which the majority of cells are followers by increasing as much as possible the production of signal. Reaching the goal of a microcolony that is split in half between leaders and followers is comparatively easy. The best strategy seems to be increasing slightly the production of the enzyme. To end up with a majority of leaders, instead, it is advisable to increase the basal expression of the coin flipper module. At the end of the chapter, a possible future application of the leader election circuit, the spontaneous formation of spatial patterns in a microcolony, is modeled with the finite state machine formalism. The gro simulations provide insights into the genetic components that are needed to implement the behavior. In particular, since both the examples of pattern formation rely on a local version of Leader Election, a short-range communication system is essential. Moreover, new synthetic components that allow to reliably downregulate the growth rate in specific cells without side effects need to be developed. In the appendix are listed the gro code utilized to simulate the model of the circuit, a script in the Python programming language that was used to split the simulations on a Linux cluster and the Matlab code developed to analyze the data.
Resumo:
Surface stress changes induced by specific adsorption of molecules were investigated using a micromechanical cantilever sensor (MCS) device. 16 MCS are grouped within four separate wells. Each well can be addressed independently by different liquid enabling functionalization of MCS separately by flowing different solutions through each well and performing sensing and reference experiments simultaneously. In addition, each well contains a fixed reference mirror, which allows measuring the absolute bending of MCS. The effect of the flow rate on the MCS bending change was found to be dependent on the absolute bending value of MCS. In addition, the signal from the reference mirror can be used to follow refractive index changes upon mixing different solutions. Finite element simulation of solution exchange in wells was compared with experiment results. Both revealed that one solution can be exchanged by another one after a total volume of 200 µl has flown through. Using MCS, the adsorption of thiolated deoxyribonucleic acid (DNA) molecules and 6-mercapto-1-hexanol (MCH) on gold surfaces, and the DNA hybridization were performed. The nanomechanical response is in agreement with data reported by Fritz et al.1 Thus, the multiwell device is readily applicable for sensing of multiple chemical and biological recognition events in a single step. In this context controlled release and uptake of drugs are currently widely discussed. As a model system, we have used polystyrene (PS) spheres with diameters in the order of µm. The swelling behavior of individual PS spheres in toluene vapor was studied via mass loading by means of micromechanical cantilever sensors. For 4–8% cross-linked PS a mass increase of 180% in saturated toluene vapor was measured. In addition, the diameter change in saturated toluene vapor was measured and the corresponding volume increase of 200% was calculated. The mass of the swollen PS sphere decreases with increasing exposure time to ultraviolet (UV) light. The swelling response is significantly different between the first and the second exposure to toluene vapor. This is attributed to the formation of a cross-linked shell at the surface of the PS spheres. Shape persistent parts were observed for locally UV irradiated PS spheres. These PS spheres were found to be fluorescent and cracks occur after exposure in toluene liquid. The diffusion time of dye molecules in PS spheres increases with increasing chemical cross-linking density. This concept of locally dissolving non cross-linked PS from the sphere was applied to fabricate donut structures on surfaces. Arrays of PS spheres were fabricated using spin coating. The donut structure was produced simply after liquid solvent rinsing. The complete cross-linking of PS spheres was found after long exposure time to UV. We found that stabilizers play a major role in the formation of the donut nanostructures.
Resumo:
This thesis deals with the transformation of ethanol into acetonitrile. Two approaches are investigated: (a) the ammoxidation of ethanol to acetonitrile and (b) the amination of ethanol to acetonitrile. The reaction of ethanol ammoxidation to acetonitrile has been studied using several catalytic systems, such as vanadyl pyrophosphate, supported vanadium oxide, multimetal molibdates and antimonates. The main conclusions are: (I) The surface acidity must be very low, because acidity catalyzes several undesired reactions, such as the formation of ethylene, and of heavy compounds as well. (II) Supported vanadium oxide is the catalyst showing the best catalytic behaviour, but the role of the support is of crucial importance. (III) Both metal molybdates and antimonates show interesting catalytic behaviour, but are poorly active, and probably require harder conditions than those used with the V oxide-based catalysts. (IV) One key point in the reaction network is the rate of reaction between acetaldehyde (the first intermediate) and ammonia, compared to the parallel rates of acetaldehyde transformation into by-products (CO, CO2, HCN, heavy compounds). Concerning the non-oxidative process, two possible strategies are investigated: (a) the ethanol ammonolysis to ethylamine coupled with ethylamine dehydrogenation, and (b) the direct non-reductive amination of ethanol to acetonitrile. Despite the good results obtained in each single step, the former reaction does not lead to good results in terms of yield to acetonitrile. The direct amination can be catalyzed with good acetonitrile yield over catalyst based on supported metal oxides. Strategies aimed at limiting catalyst deactivation have also been investigated.
Resumo:
In der vorliegenden Arbeit wurden Materialien und Aufbauten für Hybrid Solarzellen entwickelt und erforscht. rnDer Vergleich zweier bekannter Lochleitermaterialien für Solarzellen in einfachen Blend-Systemen brachte sowohl Einsicht zur unterschiedlichen Eignung der Materialien für optoelektronische Bauelemente als auch neue Erkenntnisse in Bereichen der Langzeitstabilität und Luftempfindlichkeit beider Materialien.rnWeiterhin wurde eine Methode entwickelt, um Hybrid Solarzelle auf möglichst unkomplizierte Weise aus kostengünstigen Materialien darzustellen. Die „Eintopf“-Synthese ermöglicht die unkomplizierte Darstellung eines funktionalen Hybridmaterials für die optoelektronische Anwendung. Mithilfe eines neu entwickelten amphiphilen Blockcopolymers, das als funktionelles Templat eingesetzt wurde, konnten mit einem TiO2-Precursor in einem Sol-Gel Ansatz verschiedene selbstorganisierte Morphologien des Hybridmaterials erhalten werden. Verschiedene Morphologien wurden auf ihre Eignung in Hybrid Solarzellen untersucht. Ob und warum die Morphologie des Hybridsystems die Effizienz der Solarzelle beeinflusst, konnte verdeutlicht werden. Mit der Weiterentwicklung der „Eintopf“-Synthese, durch den Austausch des TiO2-Precursors, konnte die Solarzelleneffizienz von 0.15 auf 0.4 % gesteigert werden. Weiterhin konnte die Übertragbarkeit des Systems durch den erfolgreichen Austausch des Halbleiters TiO¬2 mit ZnO bewiesen werden.rn
Resumo:
Die biologische Stickstofffixierung durch Molybdän-haltige Nitrogenasen sowie die Erforschung des zugrundeliegenden komplexen Mechanismus (N2-Aktivierung an Metall-Zentren, 6-fache Protonierung und Reduktion, N–N Bindungsspaltung unter Bildung von Ammoniak) ist von erheblichem Interesse. Insbesondere Molybdän-Komplexe wurden bereits erfolgreich als Modellverbindungen für die Untersuchung elementarer Einzelschritte der N2-Aktivierung eingesetzt. Durch die Verwendung von Triamidoamin-Liganden ist es Schrock et al. sogar gelungen mehrere Katalysezyklen zu durchlaufen und einen Mechanismus zu formulieren. Trotz der sterisch anspruchsvollen Substituenten in den Schrock-Komplexen ist die Umsatzrate dieses homogenen Katalysators, aufgrund Komplex-Deaktivierung infolge intermolekularer Reaktionen wie Dimerisierung und Disproportionierung, limitiert. In der vorliegenden Arbeit wurden einige dieser Herausforderungen angegangen und die aktiven Spezies auf einer Festphase immobilisiert, um intermolekulare Reaktionen durch räumliche Isolierung der Komplexe zu unterdrücken.rnEin Polymer-verankertes Analogon des Schrock Nitrido-Molybdän(VI)-Komplexes wurde auf einem neuen Reaktionsweg synthetisiert. Dieser beinhaltet nur einen einzigen Reaktionsschritt, um die funktionelle Gruppe „MoN“ einzuführen. Protonierung des immobilisierten Nitrido-Molybdän(VI)-Komplexes LMoVIN (L = Polymer-verankerter Triamidoamin-Ligand) mit 2,6-Lutidinium liefert den entsprechenden Imido-Molybdän(VI)-Komplex. Durch anschließende Ein-Elektronen-Reduktion mit Cobaltocen wird der Polymer-angebundene Imido-Molybdän(V)-Komplex erhalten, bewiesen durch EPR-Spektroskopie (g1,2,3 = 1.989, 1.929, 1.902). Durch die Immobilisierung und die effektive räumliche Separation der Reaktionszentren auf der Festphase werden bimolekulare Nebenreaktionen, die oft in homogenen Systemen auftreten, unterdrückt. Dies ermöglicht zum ersten Mal die Darstellung des Imido-Molybdän(V)-Intermediates des Schrock-Zyklus.rnEPR-Spektren des als Spin-Label eingeführten immobilisierten Nitrato-Kupfer(II)-Komplexes wurden unter verschiedenen Bedingungen (Lösungsmittel, Temperatur) aufgenommen, wobei sich eine starke Abhängigkeit zwischen der Zugänglichkeit und Reaktivität der immobilisierten Reaktionszentren und der Art des Lösungsmittels zeigte. Somit wurde die Reaktivität von LMoVIN gegenüber Protonen und Elektronen, welches zur Bildung von NH3 führt, unter Verwendung verschiedener Lösungsmittel untersucht und optimiert. Innerhalb des kugelförmigen Polymers verläuft die Protonierung und Reduktion von LMoVIN stufenweise. Aktive Zentren, die sich an der „äußeren Schale“ des Polymers befinden, sind gut zugänglich und reagieren schnell nach H+/e− Zugabe. Aktive Zentren im „Inneren des Polymers“ hingegen sind schlechter zugänglich und zeigen langsame diffusions-kontrollierte Reaktionen, wobei drei H+/e− Schritte gefolgt von einer Ligandenaustausch-Reaktion erforderlich sind, um NH3 freizusetzen: LMoVIN LMoVNH LMoIVNH2 LMoIIINH3 und anschließender Ligandenaustausch führt zur Freisetzung von NH3.rnIn einem weiteren Projekt wurde der Bis(ddpd)-Kupfer(II)-Komplex EPR-spektroskopisch in Hinblick auf Jahn−Teller-Verzerrung und -Dynamik untersucht. Dabei wurden die EPR-Spektren bei variabler Temperatur (70−293 K) aufgenommen. Im Festkörperspektrum bei T < 100 K erscheint der Kupfer(II)-Komplex als gestreckter Oktaeder, wohingegen das EPR-Spektrum bei höheren Temperaturen g-Werte aufzeigt, die einer pseudo-gestauchten oktaedrischen Kupfer(II)-Spezies zuzuordnen sind. Diese Tatsache wird einem intramolekularen dynamischen Jahn−Teller Phänomen zugeschrieben, welcher bei 100 K eingefroren wird.
Resumo:
Novel single step synthetic procedure for hydrophobically modified alkali soluble latexes (HASE) via a miniemulsion-analogous method is presented. This facile method simplifies the copolymerization of the monomers with basically “opposite” character in terms of their hydrophilic/hydrophobic nature, which represent one of the main challenges in water based systems. Considered systems do not represent classical miniemulsions due to a high content of water soluble monomers. However, the polymerization mechanism was found to be rather similar to miniemulsion polymerization process.rnThe influence of the different factors on the system stability has been investigated. The copolymerization behavior studies typically showed strong composition drifts during copolymerization. It was found that the copolymer composition drift can be suppressed via changing the initial monomer ratio.rnThe neutralization behavior of the obtained HASE systems was investigated via potentiometric titration. The rheological behavior of the obtained systems as a function of the different parameters, such as pH, composition (ultrahydrophobe content) and additive type and content has also been investigated.rnDetailed investigation of the storage and loss moduli, damping factor and the crossover frequencies of the samples showed that at the initial stages of the neutralization the systems show microgel-like behavior.rnThe dependence of the rheological properties on the content and the type of the ultrahydrophobe showed that the tuning of the mechanical properties can be easily achieved via minor (few percent) but significant changes in the content of the latter. Besides, changing the hydrophobicity of the ultrahydrophobe via increasing the carbon chain length represents another simple method for achieving the same results.rnThe influence of amphiphilic additives (especially alcohols) on the rheological behavior of the obtained systems has been studied. An analogy was made between micellation of surfactants and the formation of hydrophobic domains between hydrophobic groups of the polymer side chain.rnDilution induced viscosity reduction was investigated in different systems, without or with different amounts or types of the amphiphilic additive. Possibility of the controlled response to dilution was explored. It was concluded that the sensitivity towards dilution can be reduced, and in extreme cases even the increase of the dynamic modulus can be observed, which is of high importance for the setting behavior of the adhesive material.rnIn the last part of this work, the adhesive behavior of the obtained HASE systems was investigated on different substrates (polypropylene and glass) for the standard labeling paper. Wet tack and setting behavior was studied and the trends for possible applications have been evaluated.rnThe novel synthetic procedure, investigation of rheological properties and the possibility of the tuning via additives, investigated in this work create a firm background for the development of the HASE based adhesives as well as rheology modifiers with vast variety of possible applications due to ease of tuning the mechanical and rheological properties of the systems.
Resumo:
Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.
Resumo:
BACKGROUND The variant Creutzfeldt-Jakob disease incidence peaked a decade ago and has since declined. Based on epidemiologic evidence, the causative agent, pathogenic prion, has not constituted a tangible contamination threat to large-scale manufacturing of human plasma-derived proteins. Nonetheless, manufacturers have studied the prion removal capabilities of various manufacturing steps to better understand product safety. Collectively analyzing the results could reveal experimental reproducibility and detect trends and mechanisms driving prion removal. STUDY DESIGN AND METHODS Plasma Protein Therapeutics Association member companies collected more than 200 prion removal studies on plasma protein manufacturing steps, including precipitation, adsorption, chromatography, and filtration, as well as combined steps. The studies used a range of model spiking agents and bench-scale process replicas. The results were grouped based on key manufacturing variables to identify factors impacting removal. The log reduction values of a group are presented for comparison. RESULTS Overall prion removal capacities evaluated by independent groups were in good agreement. The removal capacity evaluated using biochemical assays was consistent with prion infectivity removal measured by animal bioassays. Similar reduction values were observed for a given step using various spiking agents, except highly purified prion protein in some circumstances. Comparison between combined and single-step studies revealed complementary or overlapping removal mechanisms. Steps with high removal capacities represent the conditions where the physiochemical differences between prions and therapeutic proteins are most significant. CONCLUSION The results support the intrinsic ability of certain plasma protein manufacturing steps to remove prions in case of an unlikely contamination, providing a safeguard to products.
Resumo:
Polylactide (PLA) is a biodegradable polymer that has been used in particle form for drug release, due to its biocompatibility, tailorable degradation kinetics, and desirable mechanical properties. Active pharmaceutical ingredients (APIs) may be either dissolved or encapsulated within these biomaterials to create micro- or nanoparticles. Delivery of an AIP within fine particles may overcome solubility or stability issues that can result in early elimination or degradation of the AIP in a hostile biological environment. Furthermore, it is a promising method for controlling the rate of drug delivery and dosage. The goal of this project is to develop a simple and cost-effective device that allows us to produce monodisperse micro- and nanocapsules with controllable size and adjustable sheath thickness on demand. To achieve this goal, we have studied the dual-capillary electrospray and pulsed electrospray. Dual-capillary electrospray has received considerable attention in recent years due to its ability to create core-shell structures in a single-step. However, it also increases the difficulty of controlling the inner and outer particle morphology, since two simultaneous flows are required. Conventional electrospraying has been mainly conducted using direct-current (DC) voltage with little control over anything but the electrical potential. In contrast, control over the input voltage waveform (i.e. pulsing) in electrospraying offers greater control over the process variables. Poly(L-lactic acid) (PLLA) microspheres and microcapsules were successfully fabricated via pulsed-DC electrospray and dual-capillary electrospray, respectively. Core shell combinations produced include: Water/PLLA, PLLA/polyethylene glycol (PEG), and oleic Acid/PLLA. In this study, we designed a novel high-voltage pulse forming network and a set of new designs for coaxial electrospray nozzles. We also investigated the effect of the pulsed voltage characteristics (e.g. pulse frequency, pulse amplitude and pulse width) on the particle’s size and uniformity. We found that pulse frequency, pulse amplitude, pulse width, and the combinations of these factors had a statistically significant effect on the particle’s size. In addition, factors such as polymer concentration, solvent type, feed flow rate, collection method, temperature, and humidity can significantly affect the size and shape of the particles formed.
Resumo:
Free-radical retrograde-precipitation polymerization, FRRPP in short, is a novel polymerization process discovered by Dr. Gerard Caneba in the late 1980s. The current study is aimed at gaining a better understanding of the reaction mechanism of the FRRPP and its thermodynamically-driven features that are predominant in controlling the chain reaction. A previously developed mathematical model to represent free radical polymerization kinetics was used to simulate a classic bulk polymerization system from the literature. Unlike other existing models, such a sparse-matrix-based representation allows one to explicitly accommodate the chain length dependent kinetic parameters. Extrapolating from the past results, mixing was experimentally shown to be exerting a significant influence on reaction control in FRRPP systems. Mixing alone drives the otherwise severely diffusion-controlled reaction propagation in phase-separated polymer domains. Therefore, in a quiescent system, in the absence of mixing, it is possible to retard the growth of phase-separated domains, thus producing isolated polymer nanoparticles (globules). Such a diffusion-controlled, self-limiting phenomenon of chain growth was also observed using time-resolved small angle x-ray scattering studies of reaction kinetics in quiescent systems of FRRPP. Combining the concept of self-limiting chain growth in quiescent FRRPP systems with spatioselective reaction initiation of lithography, microgel structures were synthesized in a single step, without the use of molds or additives. Hard x-rays from the bending magnet radiation of a synchrotron were used as an initiation source, instead of the more statistally-oriented chemical initiators. Such a spatially-defined reaction was shown to be self-limiting to the irradiated regions following a polymerization-induced self-assembly phenomenon. The pattern transfer aspects of this technique were, therefore, studied in the FRRP polymerization of N-isopropylacrylamide (NIPAm) and methacrylic acid (MAA), a thermoreversible and ionic hydrogel, respectively. Reaction temperature increases the contrast between the exposed and unexposed zones of the formed microgels, while the irradiation dose is directly proportional to the extent of phase separation. The response of Poly (NIPAm) microgels prepared from the technique described in this study was also characterized by small angle neutron scattering.
Resumo:
PURPOSE To determine the best-performing combination of three core buildup materials and three bonding materials based on their bond strength to ceramic blocks in vitro. MATERIALS AND METHODS The materials used for core buildup were a composite (Tetric EvoCeram), a compomer (Compoglass F), and a glass-ionomer cement (Ketac Fil Plus), and for bonding, a three-step etch-and-rinse adhesive (Syntac), a two-step etch-and-rinse adhesive (ExciTE), and a single-step system (RelyX Unicem). Bond strength to ceramic blocks was determined by shear bond strength testing. Fracture behavior was evaluated by scanning electron microscopy. RESULTS The highest adhesive values between buildup and ceramic were obtained using the materials Compoglass F and Syntac, followed by Compoglass F and ExciTE. Among the two other core buildups, Tetric EvoCeram performed better than Ketac Fil Plus, which was independent of the bonding materials. Adhesive fractures were characteristically observed with Syntac and ExciTE, and cohesive fractures were characteristically observed with RelyX Unicem. CONCLUSION These data show that compomers bonded with a multistep adhesive system achieved statistically significantly higher shear bond strength than composites and glass-ionomer cements. Within the limitations inherent to this in vitro study, the use of compomers for core buildup can be recommended.
Resumo:
Derivation of probability estimates complementary to geophysical data sets has gained special attention over the last years. Information about a confidence level of provided physical quantities is required to construct an error budget of higher-level products and to correctly interpret final results of a particular analysis. Regarding the generation of products based on satellite data a common input consists of a cloud mask which allows discrimination between surface and cloud signals. Further the surface information is divided between snow and snow-free components. At any step of this discrimination process a misclassification in a cloud/snow mask propagates to higher-level products and may alter their usability. Within this scope a novel probabilistic cloud mask (PCM) algorithm suited for the 1 km × 1 km Advanced Very High Resolution Radiometer (AVHRR) data is proposed which provides three types of probability estimates between: cloudy/clear-sky, cloudy/snow and clear-sky/snow conditions. As opposed to the majority of available techniques which are usually based on the decision-tree approach in the PCM algorithm all spectral, angular and ancillary information is used in a single step to retrieve probability estimates from the precomputed look-up tables (LUTs). Moreover, the issue of derivation of a single threshold value for a spectral test was overcome by the concept of multidimensional information space which is divided into small bins by an extensive set of intervals. The discrimination between snow and ice clouds and detection of broken, thin clouds was enhanced by means of the invariant coordinate system (ICS) transformation. The study area covers a wide range of environmental conditions spanning from Iceland through central Europe to northern parts of Africa which exhibit diverse difficulties for cloud/snow masking algorithms. The retrieved PCM cloud classification was compared to the Polar Platform System (PPS) version 2012 and Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 cloud masks, SYNOP (surface synoptic observations) weather reports, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) vertical feature mask version 3 and to MODIS collection 5 snow mask. The outcomes of conducted analyses proved fine detection skills of the PCM method with results comparable to or better than the reference PPS algorithm.