963 resultados para Semiconductor Laser
Resumo:
BACKGROUND AND OBJECTIVE: To compare the results of preoperative Nd:YAG laser anterior capsulotomy versus two-stage continuous curvilinear capsulorhexis (CCC) in phacoemulsification of eyes with white intumescent cataracts and liquefied cortex. PATIENTS AND METHODS: Twenty-three eyes with white intumescent cataract were consecutively randomized for phacoemulsification with preoperative Nd:YAG laser anterior capsulotomy (group 1, n = 11) or two-stage CCC (group 2, n = 12) procedures. Intraoperative findings and postoperative outcomes were compared using the nonparametric tests. RESULTS: Postoperative Visual acuity, mean surgical time, mean effective phacoemulsification time, and frequency of complications were not significantly different between the two groups (P > .05). Two cases in each group were converted to the extracapsular technique. Excluding these four patients, surgical time was shorter In group 1 (P = .017). CONCLUSION: Preoperative Nd:YAG laser anterior capsulotomy is a safe technique in decompressing the capsular bag before phacoemulsification of white intumescent cataracts with liquefied cortex.
Resumo:
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied.
Resumo:
Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Objective: The purpose of the study was to investigate whether dentine irradiation with a pulsed CO(2) laser (10.6 mu m) emitting pulses of 10 ms is capable of reducing dentine calcium and phosphorus losses in an artificial caries model. Design: The 90 dentine slabs obtained from bovine teeth were randomly divided into six groups (n = 15): negative control group (GC); positive control group, treated with fluoride 1.23% (GF); and laser groups irradiated with 8 J/cm(2) (L8); irradiated as in L8 + fluoride 1.23% (L8F); irradiated with 11j/cm(2) (L11); irradiated as in L11 + fluoride 1.23% (L11F). After laser irradiation the samples were submitted to a pH-cycling model for 9 days. The calcium and phosphorous contents in the de- and remineralization solutions were measured by means of inductively coupled plasma optical emission spectrometer - ICP-OES. Additionally intra-pulpal temperature measurements were performed. The obtained data were analysed by means of ANOVA and Tukey`s test (alpha = 0.05). Results: In the demineralization solutions the groups L11F and GF presented significantly lower means of calcium and phosphorous losses than the control group; and in L11F means were significantly lower than in the fluoride group. Both irradiation parameters tested caused intrapulpal temperature increase below 2 degrees C. Conclusion: It can be concluded that under the conditions of this study, CO(2) laser irradiation (10.6 mu m) with 11J/cm(2) (540 mJ and 10 Hz) of fluoride treated dentine surfaces decreases the loss of calcium and phosphorous in the demineralization process and does not cause excessive temperature increase inside the pulp chamber. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.
Resumo:
The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm(2) and 700 mW/cm(2)) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and TukeyA ` s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.
Resumo:
The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37A degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55A degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.
Resumo:
This study aimed to test the hypothesis that dentine alterations induced by 810 nm-diode laser may affect the interaction between root canal sealers and the dentin wall. Seventy-two single root human teeth were selected and root canals were enlarged with K-files. Dentine was treated with 0.5% NaOCl and 17% EDTA-T and irradiated (laser group) by diode laser (810 nm/P = 2.5W/I = 1989 W/cm(2)) or remained non-irradiated (control group). Six samples per group were analyzed by scanning electron microscopy (SEM). The remaining samples of each group were divided into three subgroups (n = 10) and sealed with one of the tested sealers (N-Rickert/AHPlus (TM)/Apexit (R)). Apical leakage was estimated by evaluating penetration of 0.5% methylene-blue dye. SEM analysis revealed that dentine at the apical third in irradiated samples was melted and fusioned whereas non-irradiated samples exhibited opened dentinal tubules. Despite the morphological changes induced by irradiation, laser did not affect the sealing ability of N-Rickert and AHPlus (TM) sealers. However, the length of apical leakage in roots filled with Apexit (R) was lower in irradiated root canals than in non-irradiated samples (p < 0.05). Morphological changes of root canal walls promoted by diode laser irradiation may improve de sealing ability of Apexit (R), a calcium hydroxide-based sealer, suggesting that improved sealing promoted by irradiation may represent an additional factor contributing to the endodontic clinical outcome.
Resumo:
The aim of this in vitro study was to evaluate some parameters of dental etching when irradiated with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser. One-hundred sound human third molars were selected and randomly distributed into ten groups (n = 10). The class V cavities of group 1 (control) were prepared with a bur and etched with 37% phosphoric acid, while groups G2 to G10, were prepared with laser (5 W, 88.46 J/cm(2), 90/70% air/water) and etched with the following powers: G3 and G4, 0.25 W; G5 and G6, 0.5 W; G7 and G8, 0.75 W; G9 and G10, 1 W. Group G2 received no laser etching. Prior to restoration, G2, G4, G6, G8 and G10 received acid etching. After restoration, all samples were submitted to a microleakage test. According to statistical analysis (Kruskal-Wallis and Dunn`s tests), G10 presented the lowest microleakage values (P < 0.05). The other groups showed no differences between them. Etching with Er,Cr:YSGG laser (1 W) followed by phosphoric acid was effective in reducing the microleakage of class V restorations.
Resumo:
The aim of this study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) laser compared with traditional treatment on dentin permeability to calcitonin and sodium alendronate. Forty bovine roots were sectioned and divided into eight groups. Groups 1 and 2 (G1/G2) were immersed in saline solution; G1T/G2T were immersed in ethylene diamine tetra-acetic acid plus sodium lauryl ether sulfate (EDTA-T) and sodium hypochlorite (NaOCl); G1I/G2I were irradiated with Er:YAG laser (2.94 mu m, 6 Hz, 40.4 J/cm(2)); G1TI/G2TI were immersed in EDTA-T, NaOCl and subjected to Er:YAG irradiation. After 4 h the radioactivity of the saline solution was measured. Statistical analysis revealed a significant difference (P < 0.05) when the groups treated with EDTA-T and NaOCl followed by Er:YAG laser irradiation were compared with the groups treated with EDTA-T only and with the groups that received no treatment. Er:YAG laser associated with traditional procedures significantly increased the diffusion of calcitonin and sodium alendronate through dentin. All groups showed calcitonin and sodium alendronate diffusion.