983 resultados para Robot Vision
Resumo:
The OECD (2006 Starting Strong II: Early Childhood Education and Care. OECD Publishing: Paris) envisions early childhood education and care settings as meeting places for diverse social groups; places that build social capital. This vision was assessed in a comparison of three preschools types: full-fee paying, subsidised-fee and publicly funded. The social composition within each was examined and the connectedness of the children (n = 472) who attended compared. Publicly funded preschools had more socially diverse populations. The quantity of social connectedness did not differ but children in publicly funded preschools described higher quality social relationships. Not all preschool settings are socially diverse but, where they are, the quality of relationships is highest.
Resumo:
There have been notable advances in learning to control complex robotic systems using methods such as Locally Weighted Regression (LWR). In this paper we explore some potential limits of LWR for robotic applications, particularly investigating its application to systems with a long horizon of temporal dependence. We define the horizon of temporal dependence as the delay from a control input to a desired change in output. LWR alone cannot be used in a temporally dependent system to find meaningful control values from only the current state variables and output, as the relationship between the input and the current state is under-constrained. By introducing a receding horizon of the future output states of the system, we show that sufficient constraint is applied to learn good solutions through LWR. The new method, Receding Horizon Locally Weighted Regression (RH-LWR), is demonstrated through one-shot learning on a real Series Elastic Actuator controlling a pendulum.
Resumo:
This study investigated the Kinaesthetic Fusion Effect (KFE) first described by Craske and Kenny in 1981. The current study did not replicate these findings. Participants did not perceive any reduction in the sagittal separation of a button pressed by the index finger of one arm and a probe touching the other, following repeated exposure to the tactile stimuli present on both unseen arms. This study’s failure to replicate the widely-cited KFE as described by Craske et al. (1984) suggests that it may be contingent on several aspects of visual information, especially the availability of a specific visual reference, the role of instructions regarding gaze direction, and the potential use of a line of sight strategy when referring felt positions to an interposed surface. In addition, a foreshortening effect was found; this may result from a line-of-sight judgment and represent a feature of the reporting method used. The transformed line of sight data were regressed against the participant reported values, resulting in a slope of 1.14 (right arm) and 1.11 (left arm), and r > 0.997 for each. The study also provides additional evidence that mis-perceptions of the mediolateral position of the limbs specifically their separation and consistent with notions of Gestalt grouping, is somewhat labile and can be influenced by active motions causing touch of one limb by the other. Finally, this research will benefit future studies that require participants to report the perceived locations of the unseen limbs.
Resumo:
In this paper we describe a body of work aimed at extending the reach of mobile navigation and mapping. We describe how running topological and metric mapping and pose estimation processes concurrently, using vision and laser ranging, has produced a full six-degree-of-freedom outdoor navigation system. It is capable of producing intricate three-dimensional maps over many kilometers and in real time. We consider issues concerning the intrinsic quality of the built maps and describe our progress towards adding semantic labels to maps via scene de-construction and labeling. We show how our choices of representation, inference methods and use of both topological and metric techniques naturally allow us to fuse maps built from multiple sessions with no need for manual frame alignment or data association.
Resumo:
Micro aerial vehicles (MAVs) are a rapidly growing area of research and development in robotics. For autonomous robot operations, localization has typically been calculated using GPS, external camera arrays, or onboard range or vision sensing. In cluttered indoor or outdoor environments, onboard sensing is the only viable option. In this paper we present an appearance-based approach to visual SLAM on a flying MAV using only low quality vision. Our approach consists of a visual place recognition algorithm that operates on 1000 pixel images, a lightweight visual odometry algorithm, and a visual expectation algorithm that improves the recall of place sequences and the precision with which they are recalled as the robot flies along a similar path. Using data gathered from outdoor datasets, we show that the system is able to perform visual recognition with low quality, intermittent visual sensory data. By combining the visual algorithms with the RatSLAM system, we also demonstrate how the algorithms enable successful SLAM.
Resumo:
This paper presents a preliminary flight test based detection range versus false alarm performance characterisation of a morphological-hidden Markov model filtering approach to vision-based airborne dim-target collision detection. On the basis of compelling in-flight collision scenario data, we calculate system operating characteristic (SOC) curves that concisely illustrate the detection range versus false alarm rate performance design trade-offs. These preliminary SOC curves provide a more complete dim-target detection performance description than previous studies (due to the experimental difficulties involved, previous studies have been limited to very short flight data sample sets and hence have not been able to quantify false alarm behaviour). The preliminary investigation here is based on data collected from 4 controlled collision encounters and supporting non-target flight data. This study suggests head-on detection ranges of approximately 2.22 km under blue sky background conditions (1.26 km in cluttered background conditions), whilst experiencing false alarms at a rate less than 1.7 false alarms/hour (ie. less than once every 36 minutes). Further data collection is currently in progress.
Resumo:
Computer vision is an attractive solution for uninhabited aerial vehicle (UAV) collision avoidance, due to the low weight, size and power requirements of hardware. A two-stage paradigm has emerged in the literature for detection and tracking of dim targets in images, comprising of spatial preprocessing, followed by temporal filtering. In this paper, we investigate a hidden Markov model (HMM) based temporal filtering approach. Specifically, we propose an adaptive HMM filter, in which the variance of model parameters is refined as the quality of the target estimate improves. Filters with high variance (fat filters) are used for target acquisition, and filters with low variance (thin filters) are used for target tracking. The adaptive filter is tested in simulation and with real data (video of a collision-course aircraft). Our test results demonstrate that our adaptive filtering approach has improved tracking performance, and provides an estimate of target heading not present in previous HMM filtering approaches.
Resumo:
The following paper proposes a novel application of Skid-to-Turn maneuvers for fixed wing Unmanned Aerial Vehicles (UAVs) inspecting locally linear infrastructure. Fixed wing UAVs, following the design of manned aircraft, traditionally employ Bank-to-Turn maneuvers to change heading and thus direction of travel. Commonly overlooked is the effect these maneuvers have on downward facing body fixed sensors, which as a result of bank, point away from the feature during turns. By adopting Skid-to-Turn maneuvers, the aircraft is able change heading whilst maintaining wings level flight, thus allowing body fixed sensors to maintain a downward facing orientation. Eliminating roll also helps to improve data quality, as sensors are no longer subjected to the swinging motion induced as they pivot about an axis perpendicular to their line of sight. Traditional tracking controllers that apply an indirect approach of capturing ground based data by flying directly overhead can also see the feature off center due to steady state pitch and roll required to stay on course. An Image Based Visual Servo controller is developed to address this issue, allowing features to be directly tracked within the image plane. Performance of the proposed controller is tested against that of a Bank-to-Turn tracking controller driven by GPS derived cross track error in a simulation environment developed to simulate the field of view of a body fixed camera.
Resumo:
In this paper we explore the ability of a recent model-based learning technique Receding Horizon Locally Weighted Regression (RH-LWR) useful for learning temporally dependent systems. In particular this paper investigates the application of RH-LWR to learn control of Multiple-input Multiple-output robot systems. RH-LWR is demonstrated through learning joint velocity and position control of a three Degree of Freedom (DoF) rigid body robot.
Resumo:
This paper describes a vision-based airborne collision avoidance system developed by the Australian Research Centre for Aerospace Automation (ARCAA) under its Dynamic Sense-and-Act (DSA) program. We outline the system architecture and the flight testing undertaken to validate the system performance under realistic collision course scenarios. The proposed system could be implemented in either manned or unmanned aircraft, and represents a step forward in the development of a “sense-and-avoid” capability equivalent to human “see-and-avoid”.
Resumo:
Rats are superior to the most advanced robots when it comes to creating and exploiting spatial representations. A wild rat can have a foraging range of hundreds of meters, possibly kilometers, and yet the rodent can unerringly return to its home after each foraging mission, and return to profitable foraging locations at a later date (Davis, et al., 1948). The rat runs through undergrowth and pipes with few distal landmarks, along paths where the visual, textural, and olfactory appearance constantly change (Hardy and Taylor, 1980; Recht, 1988). Despite these challenges the rat builds, maintains, and exploits internal representations of large areas of the real world throughout its two to three year lifetime. While algorithms exist that allow robots to build maps, the questions of how to maintain those maps and how to handle change in appearance over time remain open. The robotic approach to map building has been dominated by algorithms that optimise the geometry of the map based on measurements of distances to features. In a robotic approach, measurements of distance to features are taken with range-measuring devices such as laser range finders or ultrasound sensors, and in some cases estimates of depth from visual information. The features are incorporated into the map based on previous readings of other features in view and estimates of self-motion. The algorithms explicitly model the uncertainty in measurements of range and the measurement of self-motion, and use probability theory to find optimal solutions for the geometric configuration of the map features (Dissanayake, et al., 2001; Thrun and Leonard, 2008). Some of the results from the application of these algorithms have been impressive, ranging from three-dimensional maps of large urban strucutures (Thrun and Montemerlo, 2006) to natural environments (Montemerlo, et al., 2003).