885 resultados para Resonances
Resumo:
The review is concerned with models that analyze transport:processes that occur during microwave heating. Early models on microwave. heating used Lambert's law to describe the microwave power absorption. Over the last decade, models for transport processes have been developed with the microwave power derived from Maxwell's equations. Those models, primarily based on plane waves, have been used for analyzing microwave heating of solids, liquids, emulsions, microwave thawing and drying. The models illustrate phenomena such a resonances, hot spots, edge and runaway heating. The literature on microwave sintering, susceptor heating and microwave assisted synthesis is largely experimental in nature and only key issues are highlighted. To fully appreciate the models for microwave heating, a section on the theory of electromagnetic wave propagation is included, where expressions for the electric field in dielectric slabs and cylinders are presented.
Resumo:
The frequency response of the dielectric constant (epsilon(r)), the loss tangent (tan delta) and impedance Z of potassium acid phthalate (KAP) single crystals, monitored along the polar axis, exhibit strong resonances in the frequency range 50-200 kHz, depending on the dimensions of the sample. The observed resonance effect, which is strongly dependent on the geometric shape and size of the sample, is attributed to its piezoelectric nature. The resonance peak positions have been monitored as a function of both temperature and uniaxial pressure. The stiffness coefficient (C), computed based on the resonance data, is found to decrease with increasing temperature and increase with increasing pressure. The electro-mechanical coupling coefficient (k), obtained by resonance-anti-resonance method, has also been found to increase with rise in temperature. The epsilon(r) behaviour along the polar axis, as a function of temperature is consistent with that of k. The preliminary results on the influence, of partial replacement of K+ ions in the KAP crystal by Cs+ and Li+ ions, on the observed piezoelectric resonance effects are also included.
Resumo:
Resonant microwave power absorption is examined for slabs exposed to TEM waves from both faces and for a slab placed on a reflecting support. Using the electric field distribution in the slab, the average power is obtained by integrating the spatially distributed power across the sample length. Due to constructive interference of the standing waves within the sample, the average power rises to a local maximum during a resonance. Irrespective of the material, resonances occur at integral values of L/lambda(s) when the slab is exposed to radiation from both faces and at L/lambda(s) = 0.5n-0.25 when placed on a reflecting support.
Resumo:
Three-dimensional (3D) structure of a hairpin DNA d-CTAGAGGATCCTTTUGGATCCT (22mer; abbreviated as U4-hairpin), which has a uracil nucleotide unit at the fourth position from the 5' end of the tetra-loop has been solved by NMR spectroscopy. The H-1 resonances of this hairpin have been assigned almost completely. NMR restrained molecular dynamics and energy minimisation procedures have been used to describe the 3D structure of the U4 hairpin. This study establishes that the stem of the hairpin adopts a right handed B-DNA conformation while the T-12 and U-15 nucleotide stack upon 3' and 5' ends of the stem, respectively. Further, T-14 stacks upon both T-12 and U-15 while T-13 partially stacks upon T-14. Very weak stacking interaction is observed between T-13 and T-12. All the individual nucleotide bases adopt 'anti' conformation with respect to their sugar moiety. The turning phosphate in the loop is located between T-13 and T-14. The stereochemistry of U-15 mimics the situation where uracil would stack in a B-DNA conformation. This could be the reason as to why the U4-hairpin is found to be the best substrate for its interaction with uracil DNA glycosylase (UDG) compared to the other substrates in which the uracil is at the first, second and third positions of the tetra-loop from its 5' end, as reported previously.
Resumo:
Microwave (MW) thawing of 2D frozen cylinders exposed to uniform plane waves from one face, is modeled using the effective heat capacity formulation with the MW power obtained from the electric field equations. Computations are illustrated for tylose (23% methyl cellulose gel) which melts over a range of temperatures giving rise to a mushy zone. Within the mushy region the dielectric properties are functions of the liquid volume fraction. The resulting coupled, time dependent non-linear equations are solved using the Galerkin finite element method with a fixed mesh. Our method efficiently captures the multiple connected thawed domains that arise due to the penetration of MWs in the sample. For a cylinder of diameter D, the two length scales that control the thawing dynamics are D/D-p and D/lambda(m), where D-p and lambda(m) are the penetration depth and wavelength of radiation in the sample respectively. For D/D-p, D/lambda(m) much less than 1 power absorption is uniform and thawing occurs almost simultaneously across the sample (Regime I). For D/D-p much greater than 1 thawing is seen to occur from the incident face, since the power decays exponentially into the sample (Regime III). At intermediate values, 0.2 < D/D-p, D/lambda(m) < 2.0 (Regime II) thawing occurs from the unexposed face at smaller diameters, from both faces at intermediate diameters and from the exposed and central regions at larger diameters. Average power absorption during thawing indicates a monotonic rise in Regime I and a monotonic decrease in Regime III. Local maxima in the average power observed for samples in Regime II are due to internal resonances within the sample. Thawing time increases monotonically with sample diameter and temperature gradients in the sample generally increase from Regime I to Regime III. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Two-dimensional NMR and molecular dynamics simulations have been used to determine the three-dimensional structures of two hairpin DNA structures: d-CTAGAG GATCCUTTTGGATCCT (abbreviated as U1-hairpin) and d-CTAGAGGATCCTTUTGGATCCT (abbreviated as U3-hairpin). The (1) H resonances of both of these hairpin structures have been assigned almost completely. NMR restrained molecular dynamics and energy minimization procedures have been used to describe the three-dimensional structures of these hairpins. This study and concurrent NMR structural studies on two other d-CTAGAGGA TCCTUTTGGATCCT (abbreviated as U2-hairpin) and d-CTAGAGGATCCTTTUGGATCCT (abbreviated as U4-hairpin) have shed light upon various interactions reported between Echerichia coli uracil DNA glycosylase (UDG) and uracil-containing DNA. The backbone torsion angles, which partially influence the local conformation of U12 and U14 in U1 and U3-hairpins, respectively, are probably locked in the trans conformation as in the case of U-13 in the U2-hairpin. Such a stretched-out backbone conformation in the vicinity of U-12 and U-14 is thought to be the reason why the K-m value is poor for U1- and U3-hairpins as it is for the U2-hairpin. Furthermore, the bases U-12 and U-14 in both U1- and U3-hairpins adopt an anti conformation, in contrast with the base conformation of U-13 in the U2-hairpin, which adopts a syn conformation. The clear discrepancy observed in the U-base orientation with respect to the sugar moieties could explain why the V-max value is 10- to 20-fold higher for the U1- and U3-hairpins compared with the U2-hairpin. Taken together, these observations support our interpretation that the unfavourable backbone results in a poor K-m value, whereas the unfavourable nucleotide conformation results in a poor V-max value. These two parameters therefore make the U1- and U3-hairpins better substrates for UDG compared with the U2-hairpin, as reported earlier [Kumar, N. V. & Varshney, U. (1997) Nucleic Acids Res. 25, 2336-2343.].
Resumo:
We show that it is possible to change from a subnatural electromagnetically induced transparency (EIT) feature to a subnatural electromagnetically induced absorption (EIA) feature in a (degenerate) three-level. system. The change is effected by turning on a second control beam counter-propagating with respect to the first beam. We observe this change in the D-2 line of Rb in a room temperature vapor cell. The observations are supported by density-matrix analysis of the complete sublevel structure including the effect of Doppler averaging, but can be understood qualitatively as arising due to the formation of N-type systems with the two control beams. Since many of the applications of EIT and EIA rely on the anomalous dispersion near the resonances, this introduces a new ability to control the sign of the dispersion. Copyright (C) EPLA, 2012
Resumo:
Experiments have shown strong effects of some substrates on the localized plasmons of metallic nano particles but they are inconclusive on the affecting parameters. Here, we have used discrete dipole approximation in conjunction with Sommerfeld integral relations to explain the effect of the substrates as a function of the parameters of incident radiation. The radiative coupling can both quench and enhance the resonance and its dependence on the angle and polarization of incident radiation with respect to the surface is shown. Non-radiative interaction with the substrate enhances the plasmon resonance of the particles and can shift the resonances from their free-space energies significantly. The non-radiative interaction of the substrate is sensitive to the shape of particles and polarization of incident radiation with respect to substrate. Our results show that the plasmon resonances in coupled and single particles can be significantly altered from their free-space resonances and are quenched or enhanced by the choice of substrate and polarization of incident radiation. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4736544]
Resumo:
New C-13-detected NMR experiments have been devised for molecules in solution and solid state, which provide chemical shift correlations of methyl groups with high resolution, selectivity and sensitivity. The experiments achieve selective methyl detection by exploiting the one bond J-coupling between the C-13-methyl nucleus and its directly attached C-13 spin in a molecule. In proteins such correlations edit the C-13-resonances of different methyl containing residues into distinct spectral regions yielding a high resolution spectrum. This has a range of applications as exemplified for different systems such as large proteins, intrinsically disordered polypeptides and proteins with a paramagnetic centre.
Resumo:
Cross strand aromatic interactions between a facing pair of phenylalanine residues in antiparallel beta-sheet structures have been probed using two structurally defined model peptides. The octapeptide Boc-(LFVPPLFV)-P-D-P-L-OMe (peptide 1) favors the beta-hairpin conformation nucleated by the type II' beta-turn formed by the (D)Pro-(L)Pro segment, placing Phe2 and Phe7 side chains in proximity. Two centrally positioned (D)Pro-(L)Pro segments facilitate the three stranded beta-sheet formation in the 14 residue peptide Boc-LFV(D)P(L)PLFVA(D)P(L)PLFV-OMe (peptide 2) in which the Phe2/Phe7 orientations are similar to that in the octapeptide. The anticipated folded conformations of peptides 1 and 2 are established by the delineation of intramolecularly hydrogen bonded NH groups and by the observation of specific cross strand NOEs. The observation of ring current shifted aromatic protons is a diagnostic of close approach of the Phe2 and Phe7 side chains. Specific assignment of aromatic proton resonances using HSQC and HSQC-TOCSY methods allow an analysis of interproton NOEs between the spatially proximate aromatic rings. This approach facilitates specific assignments in systems containing multiple aromatic rings in spectra at natural abundance. Evidence is presented for a dynamic process which invokes a correlated conformational change about the C-alpha-C-beta(chi(1)) bond for the pair of interacting Phe residues. NMR results suggest that aromatic ring orientations observed in crystals are maintained in solution. Anomalous temperature dependence of ring current induced proton chemical shifts suggests that solvophobic effects may facilitate aromatic ring clustering in apolar solvents.
Resumo:
The incorporation of beta-amino acid residues into the antiparallel beta-strand segments of a multi-stranded beta-sheet peptide is demonstrated for a 19-residue peptide, Boc-LV(beta)FV(D)PGL(beta)FVVL(D)PGLVL(beta)FVV-OMe (BBH19). Two centrally positioned (D)Pro-Gly segments facilitate formation of a stable three-stranded beta-sheet, in which beta-phenylalanine ((beta)Phe) residues occur at facing positions 3, 8 and 17. Structure determination in methanol solution is accomplished by using NMR-derived restraints obtained from NOEs, temperature dependence of amide NH chemical shifts, rates of H/D exchange of amide protons and vicinal coupling constants. The data are consistent with a conformationally well-defined three-stranded beta-sheet structure in solution. Cross-strand interactions between (beta)Phe3/(beta)Phe17 and (beta)Phe3/Val15 residues define orientations of these side-chains. The observation of close contact distances between the side-chains on the N- and C-terminal strands of the three-stranded beta-sheet provides strong support for the designed structure. Evidence is presented for multiple side-chain conformations from an analysis of NOE data. An unusual observation of the disappearance of the Gly NH resonances upon prolonged storage in methanol is rationalised on the basis of a slow aggregation step, resulting in stacking of three-stranded beta-sheet structures, which in turn influences the conformational interconversion between type I' and type II' beta-turns at the two (D)Pro-Gly segments. Experimental evidence for these processes is presented. The decapeptide fragment Boc-LV(beta)FV(D)PGL(beta)FVV-OMe (BBH10), which has been previously characterized as a type I' beta-turn nucleated hairpin, is shown to favour a type II' beta-turn conformation in solution, supporting the occurrence of conformational interconversion at the turn segments in these hairpin and sheet structures.
Resumo:
Stimulated optical signals obtained by subjecting the system to a narrow band and a broadband pulse show both gain and loss Raman features at the red and blue side of the narrow beam, respectively. Recently observed temperature-dependent asymmetry in these features Mallick et al., J. Raman Spectrosc. 42, 1883 (2011); Dang et al., Phys. Rev. Lett. 107, 043001 (2011)] has been attributed to the Stokes and anti-Stokes components of the third-order susceptibility, chi((3)). By treating the setup as a steady state of an open system coupled to four quantum radiation field modes, we show that Stokes and anti-Stokes processes contribute to both the loss and gain resonances. chi((3)) predicts loss and gain signals with equal intensity for electronically off-resonant excitation. Some asymmetry may exist for resonant excitation. However, this is unrelated to the Stokes vs anti-Stokes processes. Any observed temperature-dependent asymmetry must thus originate from effects lying outside the chi((3)) regime.
Resumo:
Ideally, it is desirable to design and manufacture a transformer winding that can render all its internal resonances non-excitable. This study examines the effectiveness of an interleaved winding in achieving this goal. While investigating its effectiveness, it led to the establishment of a much desired theoretical basis that reinforces the reasons put forward in the literature to explain internal insulation failures observed in interleaved windings used in extra high voltage (EHV) transformers. Numerical calculations along with experimental verification on actual transformer windings are presented. This study reveals that most of the natural frequencies that are normally non-excitable in the line and neutral current responses of an interleaved winding have been rendered excitable in the disk-to-disk voltages, thus, providing favourable conditions for insulation overstress because of resonant overvoltages. Prevalence of such a condition is an inherent characteristic of interleaved windings.
Resumo:
Moore's Law has driven the semiconductor revolution enabling over four decades of scaling in frequency, size, complexity, and power. However, the limits of physics are preventing further scaling of speed, forcing a paradigm shift towards multicore computing and parallelization. In effect, the system is taking over the role that the single CPU was playing: high-speed signals running through chips but also packages and boards connect ever more complex systems. High-speed signals making their way through the entire system cause new challenges in the design of computing hardware. Inductance, phase shifts and velocity of light effects, material resonances, and wave behavior become not only prevalent but need to be calculated accurately and rapidly to enable short design cycle times. In essence, to continue scaling with Moore's Law requires the incorporation of Maxwell's equations in the design process. Incorporating Maxwell's equations into the design flow is only possible through the combined power that new algorithms, parallelization and high-speed computing provide. At the same time, incorporation of Maxwell-based models into circuit and system-level simulation presents a massive accuracy, passivity, and scalability challenge. In this tutorial, we navigate through the often confusing terminology and concepts behind field solvers, show how advances in field solvers enable integration into EDA flows, present novel methods for model generation and passivity assurance in large systems, and demonstrate the power of cloud computing in enabling the next generation of scalable Maxwell solvers and the next generation of Moore's Law scaling of systems. We intend to show the truly symbiotic growing relationship between Maxwell and Moore!
Resumo:
To investigate the dynamics of gravity waves in stratified Boussinesq flows, a model is derived that consists of all three-gravity-wave-mode interactions (the GGG model), excluding interactions involving the vortical mode. The GGG model is a natural extension of weak turbulence theory that accounts for exact three-gravity-wave resonances. The model is examined numerically by means of random, large-scale, high-frequency forcing. An immediate observation is a robust growth of the so-called vertically sheared horizontal flow (VSHF). In addition, there is a forward transfer of energy and equilibration of the nonzero-frequency (sometimes called ``fast'') gravity-wave modes. These results show that gravity-wave-mode interactions by themselves are capable of systematic interscale energy transfer in a stratified fluid. Comparing numerical simulations of the GGG model and the full Boussinesq system, for the range of Froude numbers (Fr) considered (0.05 a parts per thousand currency sign Fr a parts per thousand currency sign 1), in both systems the VSHF is hardest to resolve. When adequately resolved, VSHF growth is more vigorous in the GGG model. Furthermore, a VSHF is observed to form in milder stratification scenarios in the GGG model than the full Boussinesq system. Finally, fully three-dimensional nonzero-frequency gravity-wave modes equilibrate in both systems and their scaling with vertical wavenumber follows similar power-laws. The slopes of the power-laws obtained depend on Fr and approach -2 (from above) at Fr = 0.05, which is the strongest stratification that can be properly resolved with our computational resources.