950 resultados para Phase transitions


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using a series of partial phase transitions, an effective photocatalyst with fibril morphology was prepared. The catalytic activities of these materials were tested against phenol and herbicide in water. Both H-titanate and TiO2-(B) fibres decorated with anatase nanocrystals were studied. It was found that anatase coated TiO2-(B) fibres prepared by a 45 h hydrothermal treatment followed by calcination were not only superior photocatalysts but could also be readily separated from the slurry after photocatalytic reactions due to its fibril morphology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article we study the azimuthal shear deformations in a compressible Isotropic elastic material. This class of deformations involves an azimuthal displacement as a function of the radial and axial coordinates. The equilibrium equations are formulated in terms of the Cauchy-Green strain tensors, which form an overdetermined system of partial differential equations for which solutions do not exist in general. By means of a Legendre transformation, necessary and sufficient conditions for the material to support this deformation are obtained explicitly, in the sense that every solution to the azimuthal equilibrium equation will satisfy the remaining two equations. Additionally, we show how these conditions are sufficient to support all currently known deformations that locally reduce to simple shear. These conditions are then expressed both in terms of the invariants of the Cauchy-Green strain and stretch tensors. Several classes of strain energy functions for which this deformation can be supported are studied. For certain boundary conditions, exact solutions to the equilibrium equations are obtained. © 2005 Society for Industrial and Applied Mathematics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The possibility to control the morphology and nucleation density of quasi-one-dimensional, single-crystalline α -Fe2 O3 nanostructures by varying the electric potential of iron surfaces exposed to reactive oxygen plasmas is demonstrated experimentally. A systematic increase in the oxygen ion flux through rf biasing of otherwise floating substrates and then an additional increase of the ion/neutral density resulted in remarkable structural transformations of straight nanoneedles into nanowires with controlled tapering/aspect ratio and also in larger nucleation densities. Multiscale numerical simulations relate the microscopic ion flux topographies to the nanostructure nucleation and morphological evolution. This approach is applicable to other metal-oxide nanostructures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

High temperature expansion is an effective tool for studying second order phase transitions. With this in mind, we have looked at a high momentum expansion for homogeneous isotropic turbulence. Combining our results with those of the inertial range, we give another view of extended self-similarity (ESS).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many active pharmaceutical ingredients (APIs) have both anhydrate and hydrate forms. Due to the different physicochemical properties of solid forms, the changes in solid-state may result in therapeutic, pharmaceutical, legal and commercial problems. In order to obtain good solid dosage form quality and performance, there is a constant need to understand and control these phase transitions during manufacturing and storage. Thus it is important to detect and also quantify the possible transitions between the different forms. In recent years, vibrational spectroscopy has become an increasingly popular tool to characterise the solid-state forms and their phase transitions. It offers several advantages over other characterisation techniques including an ability to obtain molecular level information, minimal sample preparation, and the possibility of monitoring changes non-destructively in-line. Dehydration is the phase transition of hydrates which is frequently encountered during the dosage form production and storage. The aim of the present thesis was to investigate the dehydration behaviour of diverse pharmaceutical hydrates by near infrared (NIR), Raman and terahertz pulsed spectroscopic (TPS) monitoring together with multivariate data analysis. The goal was to reveal new perspectives for investigation of the dehydration at the molecular level. Solid-state transformations were monitored during dehydration of diverse hydrates on hot-stage. The results obtained from qualitative experiments were used to develop a method and perform the quantification of the solid-state forms during process induced dehydration in a fluidised bed dryer. Both in situ and in-line process monitoring and quantification was performed. This thesis demonstrated the utility of vibrational spectroscopy techniques and multivariate modelling to monitor and investigate dehydration behaviour in situ and during fluidised bed drying. All three spectroscopic methods proved complementary in the study of dehydration. NIR spectroscopy models could quantify the solid-state forms in the binary system, but were unable to quantify all the forms in the quaternary system. Raman spectroscopy models on the other hand could quantify all four solid-state forms that appeared upon isothermal dehydration. The speed of spectroscopic methods makes them applicable for monitoring dehydration and the quantification of multiple forms was performed during phase transition. Thus the solid-state structure information at the molecular level was directly obtained. TPS detected the intermolecular phonon modes and Raman spectroscopy detected mostly the changes in intramolecular vibrations. Both techniques revealed information about the crystal structure changes. NIR spectroscopy, on the other hand was more sensitive to water content and hydrogen bonding environment of water molecules. This study provides a basis for real time process monitoring using vibrational spectroscopy during pharmaceutical manufacturing.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modern drug discovery gives rise to a great number of potential new therapeutic agents, but in some cases the efficient treatment of patient may not be achieved because the delivery of active compounds to the target site is insufficient. Thus, drug delivery is one of the major challenges in current pharmaceutical research. Numerous nanoparticle-based drug carriers, e.g. liposomes, have been developed for enhanced drug delivery and targeting. Drug targeting may enhance the efficiency of the treatment and, importantly, reduce unwanted side effects by decreasing drug distribution to non-target tissues. Liposomes are biocompatible lipid-based carriers that have been studied for drug delivery during the last 40 years. They can be functionalized with targeting ligands and sensing materials for triggered activation. In this study, various external signal-assisted liposomal delivery systems were developed. Signals can be used to modulate drug permeation or release from the liposome formulation, and they provide accurate control of time, place and rate of activation. The study involved three types of signals that were used to trigger drug permeation and release: electricity, heat and light. Electrical stimulus was utilized to enhance the permeation of liposomal DNA across the skin. Liposome/DNA complex-mediated transfections were performed in tight rat epidermal cell model. Various transfection media and current intensities were tested, and transfection efficiency was evaluated non-invasively by monitoring the concentration of secreted reporter protein in cell culture medium. Liposome/DNA complexes produced gene expression, but electrical stimulus did not enhance the transfection efficiency significantly. Heat-sensitive liposomal drug delivery system was developed by coating liposomes with biodegradable and thermosensitive poly(N-(2-hydroxypropyl) methacrylamide-mono/dilactate polymer. Temperature-triggered liposome aggregation and contents release from liposomes were evaluated. The cloud point temperature (CP) of the polymer was set to 42 °C. Polymer-coated liposome aggregation and contents release were observed above CP of the polymer, while non-coated liposomes remained intact. Polymer precipitates above its CP and interacts with liposomal bilayers. It is likely that this induces permeabilization of the liposomal membrane and contents release. Light-sensitivity was introduced to liposomes by incorporation of small (< 5 nm) gold nanoparticles. Hydrophobic and hydrophilic gold nanoparticles were embedded in thermosensitive liposomes, and contents release was investigated upon UV light exposure. UV light-induced lipid phase transitions were examined with small angle X-ray scattering, and light-triggered contents release was shown also in human retinal pigment epithelial cell line. Gold nanoparticles absorb light energy and transfer it into heat, which induces phase transitions in liposomes and triggers the contents release. In conclusion, external signal-activated liposomes offer an advanced platform for numerous applications in drug delivery, particularly in the localized drug delivery. Drug release may be localized to the target site with triggering stimulus that results in better therapeutic response and less adverse effects. Triggering signal and mechanism of activation can be selected according to a specific application.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A lattice formahsm using "spin variables" is employed to analyse multi-state models for the adsorption of neutral dipoles.In particular, a spin-1/2 (two-state) model incorporating permanent and reduced dipole moments of the solvent and the organic adsorbate,substrate interactions, and &screteness of charge effects is analysed The resulting Generalized Islng Hamaltonian is solved under mean field approximation (MFA) in order to derive the adsorption isotherm for organic molecules A few spin-1 (three-state) models are also analysed under MFA to describe the competitive adsorption of multi-state solvent and organic dipoles, and the appropriate equilibrium relations are derived The unification and isomorphism existing at the Hamlltonlan level for several diverse realizations, such as adsorption of ions and solvent/orgamc molecules, is indicated The possibility of analysing phase transitions using this generalized approach is briefly indicated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Wide-line proton NMR studies on polycrystalline tetramethylammonium tetrachlorozincate have been carried out at high hydrostatic pressures up to 15 kbar in the temperature range 77-300 K and at ambient pressure down to 4.2 K. A second-moment transition is observed to occur starting around 161 K, the temperature for the V-VI phase transition. This transition temperature is seen to have a negative pressure coefficient up to 2 kbar, beyond which it changes sign. At 77 K the second moment decreases to 4 kbar and then increases again as a function of pressure. The results are explained in terms of the dynamics of the N(CH3)4 groups.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lithium rubidium sulphate, LiRbSO4 (LRS), undergoes a sequence of four phase transitions at 166, 185, 202 and 204°C. The phase between 202 and 204°C is incommensurate. Polarized phonon Raman spectra in the frequency region of 50-1200 cm-1 are presented to identify the external and internal vibrational modes at room temperature. The internal mode frequencies of the sulphate ions are presented in the temperature region from -150 to 230°C covering all the phase transitions. The total integrated areas of the 1, 2 and 4 modes show an anomalous increase across the phase transitions. The frequencies of the symmetric stretching (1) and symmetric bending (2) modes do not show any changes at the phase transitions, but the width of the 2 mode shows changes across the phase transitions. A small increase in the linewidth of the 2 mode observed in the incommensurate phase is attributed to the influence of the incommensurate modulation wave. A DSC thermogram showed endothermic peaks during heating at all the phase transitions. The IR spectrum recorded at room temperature showed the expected Au and Bu internal modes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The use of paramagnetic probes in membrane research is reviewed. Electron paramagnetic resonance studies on model and biological membranes doped with covalent and non-covalent spin-labels have been discussed with special emphasis on the methodology and the type of information obtainable on several important phenomena like membrane fluidity, lipid flip-flop, lateral diffusion of lipids, lipid phase separation, lipid bilayer phase transitions, lipid-protein interactions and membrane permeability. Nuclear magnetic resonance spectroscopy has also been effectively used to study the conformations of cation mediators across membranes and to analyse in detail the transmembrane ionic motions at the mechanistic level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The text is divided into three parts; Properties, Application and Safety of Ammonium Nitrate (AN) based fertilisers. In Properties, the structures and phase transitions of ammonium and potassium nitrate are reviewed. The consequences of phase transitions affect the proper use of fertilisers. Therefore the products must be stabilised against the volume changes and consequent loss of bulk density and hardness, formation of dust and finally caking of fertilisers. The effect of different stabilisers is discussed. Magnesium nitrate, ammonium sulphate and potassium nitrate are presented as a good compromise. In the Application part, the solid solutions in the systems (K+,NH4+)NO3- and (NH4+,K+)(Cl-,NO3-) are presented based on studies made with DSC and XRD. As there are clear limits for solute content in the solvent lattice, a number of disproportionation transitions exist in these process phases, e.g., N3 (solid solution isomorphous to NH4NO3-III) disproportionates to phases K3 (solid solution isomorphous to KNO3-III) and K2 (solid solution isomorphous to KNO3-II). In the crystallisation experiments, the formation of K3 depends upon temperature and the ratio K/(K+NH4). The formation of phases K3, N3, and K2 was modelled as a function of temperature and the mole ratios. In introducing chlorides, two distinct maxima for K3 were found. Confirmed with commercial potash samples, the variables affecting the reaction of potassium chloride with AN are the particle size, time, temperature, moisture content and amount of organic coating. The phase diagrams obtained by crystallisation studies were compared with a number of commercial fertilisers and, with regard to phase composition, the temperature and moisture content are critical when the formation and stability of solid solutions are considered. The temperature where the AN-based fertiliser is solidified affects the amount of compounds crystallised at that point. In addition, the temperature where the final moisture is evaporated affects the amount and type of solid solution formed at this temperature. The amount of remaining moisture affects the stability of the K3 phase. The K3 phase is dissolved by the moisture and recrystallised into the quantities of K3, which is stable at the temperature where the sample is kept. The remaining moisture should not be free; it should be bound as water in the final product. The temperatures during storage also affect the quantity of K3 phase. As presented in the figures, K3 phase is not stable at temperatu¬res below 30 °C. If the temperature is about 40 °C, the K3 phase can be formed due to the remaining moisture. In the Safety part, self-sustaining decomposition (SSD), oxidising and energetic properties of fertilisers are discussed. Based on the consequence analysis of SSD, early detection of decomposition in warehouses and proper temperature control in the manufacturing process is important. SSD and oxidising properties were found in compositions where K3 exists. It is assumed that potassium nitrate forms a solid matrix in which AN can decompose. The oxidising properties can be affected by the form of the product. Granular products are inherently less oxidising. Finally energetic properties are reviewed. The composition of the fertiliser has an importance based on theoretical calculations supported by experimental studies. Materials such as carbonates and sulphates act as diluents. An excess of ammonium ions acts as a fuel although this is debatable. Based on the experimental work, the physical properties have a major importance over the composition. A high bulk density is of key importance for detonation resistance.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Polymer protected gold nanoparticles have successfully been synthesized by both "grafting-from" and "grafting-to" techniques. The synthesis methods of the gold particles were systematically studied. Two chemically different homopolymers were used to protect gold particles: thermo-responsive poly(N-isopropylacrylamide), PNIPAM, and polystyrene, PS. Both polymers were synthesized by using a controlled/living radical polymerization process, reversible addition-fragmentation chain transfer (RAFT) polymerization, to obtain monodisperse polymers of various molar masses and carrying dithiobenzoate end groups. Hence, particles protected either with PNIPAM, PNIPAM-AuNPs, or with a mixture of two polymers, PNIPAM/PS-AuNPs (i.e., amphiphilic gold nanoparticles), were prepared. The particles contain monodisperse polymer shells, though the cores are somewhat polydisperse. Aqueous PNIPAM-AuNPs prepared using a "grafting-from" technique, show thermo-responsive properties derived from the tethered PNIPAM chains. For PNIPAM-AuNPs prepared using a "grafting-to" technique, two-phase transitions of PNIPAM were observed in the microcalorimetric studies of the aqueous solutions. The first transition with a sharp and narrow endothermic peak occurs at lower temperature, and the second one with a broader peak at higher temperature. In the first transition PNIPAM segments show much higher cooperativity than in the second one. The observations are tentatively rationalized by assuming that the PNIPAM brush can be subdivided into two zones, an inner and an outer one. In the inner zone, the PNIPAM segments are close to the gold surface, densely packed, less hydrated, and undergo the first transition. In the outer zone, on the other hand, the PNIPAM segments are looser and more hydrated, adopt a restricted random coil conformation, and show a phase transition, which is dependent on both particle concentration and the chemical nature of the end groups of the PNIPAM chains. Monolayers of the amphiphilic gold nanoparticles at the air-water interface show several characteristic regions upon compression in a Langmuir trough at room temperature. These can be attributed to the polymer conformational transitions from a pancake to a brush. Also, the compression isotherms show temperature dependence due to the thermo-responsive properties of the tethered PNIPAM chains. The films were successfully deposited on substrates by Langmuir-Blodgett technique. The sessile drop contact angle measurements conducted on both sides of the monolayer deposited at room temperature reveal two slightly different contact angles, that may indicate phase separation between the tethered PNIPAM and PS chains on the gold core. The optical properties of amphiphilic gold nanoparticles were studied both in situ at the air-water interface and on the deposited films. The in situ SPR band of the monolayer shows a blue shift with compression, while a red shift with the deposition cycle occurs in the deposited films. The blue shift is compression-induced and closely related to the conformational change of the tethered PNIPAM chains, which may cause a decrease in the polarity of the local environment of the gold cores. The red shift in the deposited films is due to a weak interparticle coupling between adjacent particles. Temperature effects on the SPR band in both cases were also investigated. In the in situ case, at a constant surface pressure, an increase in temperature leads to a red shift in the SPR, likely due to the shrinking of the tethered PNIPAM chains, as well as to a slight decrease of the distance between the adjacent particles resulting in an increase in the interparticle coupling. However, in the case of the deposited films, the SPR band red-shifts with the deposition cycles more at a high temperature than at a low temperature. This is because the compressibility of the polymer coated gold nanoparticles at a high temperature leads to a smaller interparticle distance, resulting in an increase of the interparticle coupling in the deposited multilayers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

After briefly reviewing the theory and instrumentation, results from a variety of experiments carried out by the authors on the photoacoustic spectroscopy of solids and surfaces by employing an indigenous spectrometer are discussed in the light of the recent literature. Some of the important findings discussed are, phase angle spectroscopy, anomalous behaviour of monolayers, unusual frequency dependence in small cell volumes, spectra of a variety of solids including amorphous arsenic chalcogenides, photoacoustic detection of phase transitions and determination of surface areas and surface acidities of oxides. Recent developments such as piezoelectric photoacoustic spectroscopy, depth profiling and subsurface imaging are also presented.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A compact clamp-type high pressure cell for carrying out electrical conductivity measurements on small solid samples of size 1 mm or less at pressures upto 8 GPa (i.e., 80 kbar) and for use down to 77 K has been designed and fabricated. The pressure generated in the sample region has been calibrated at room temperature against the polymorphic phase transitions of Bismuth and Ytterbium. The pressure relaxation of the clamp at low temperatures has been estimated by monitoring the electrical conductivity behavior of lead. Review of Scientific Instruments is copyrighted by The American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.