970 resultados para Pancreatic cancer biomarkers


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The identification of biomarkers capable of providing a reliable molecular diagnostic test for prostate cancer (PCa) is highly desirabie clinically. We describe here 4 biomarkers, UDP-N-Acetyl-alpha-D-galactosamine transferase (GalNAc-T3; not previously associated with PCa), PSMA, Hepsin and DD3/PCA3, which, in combination, distinguish prostate cancer from benign prostate hyperplasia (BPH). GalNAc-T3 was identified as overexpressed in PCa tissues by microarray analysis, confirmed by quantitative real-time PCR and shown immunohistochemically to be localised to prostate epithelial cells with higher expression in malignant cells. Real-time quantitative PCR analysis across 21 PCa and 34 BPH tissues showed 4.6-fold overexpression of GalNAc-T3 (p = 0.005). The noncoding mRNA (DD3/PCA3) was overexpressed 140-fold (p = 0.007) in the cancer samples compared to BPH tissues. Hepsin was overexpressed 21-fold (p = 0.049, whereas the overexpression for PSMA was 66-fold (p = 0.047). When the gene expression data for these 4 biomarkers was combined in a logistic regression model, a predictive index was obtained that distinguished 100% of the PCa samples from all of the BPH samples. Therefore, combining these genes in a real-time PCR assay represents a powerful new approach to diagnosing PCa by molecular profiling. (c) 2005 Wiley-Liss, Inc.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A report from the National Institutes of Health defines a disease biomarker as a “characteristic that is objectively measured and evaluated as an indicator of normal biologic processes, pathogenic processes, or pharmacologic responses to a therapeutic intervention.” Early diagnosis is a crucial factor for incurable disease such as cancer and Alzheimer’s disease (AD). During the last decade researchers have discovered that biochemical changes caused by a disease can be detected considerably earlier as compared to physical manifestations/symptoms. In this dissertation electrochemical detection was utilized as the detection strategy as it offers high sensitivity/specificity, ease of operation, and capability of miniaturization and multiplexed detection. Electrochemical detection of biological analytes is an established field, and has matured at a rapid pace during the last 50 years and adapted itself to advances in micro/nanofabrication procedures. Carbon fiber microelectrodes were utilized as the platform sensor due to their high signal to noise ratio, ease and low-cost of fabrication, biocompatibility, and active carbon surface which allows conjugation with biorecognition moieties. This dissertation specifically focuses on the detection of 3 extensively validated biomarkers for cancer and AD. Firstly, vascular endothelial growth factor (VEGF) a cancer biomarker was detected using a one-step, reagentless immunosensing strategy. The immunosensing strategy allowed a rapid and sensitive means of VEGF detection with a detection limit of about 38 pg/mL with a linear dynamic range of 0–100 pg/mL. Direct detection of AD-related biomarker amyloid beta (Aβ) was achieved by exploiting its inherent electroactivity. The quantification of the ratio of Aβ1-40/42 (or Aβ ratio) has been established as a reliable test to diagnose AD through human clinical trials. Triple barrel carbon fiber microelectrodes were used to simultaneously detect Aβ1-40 and Aβ1-42 in cerebrospinal fluid from rats within a detection range of 100nM to 1.2μM and 400nM to 1μM respectively. In addition, the release of DNA damage/repair biomarker 8-hydroxydeoxyguanine (8-OHdG) under the influence of reactive oxidative stress from single lung endothelial cell was monitored using an activated carbon fiber microelectrode. The sensor was used to test the influence of nicotine, which is one of the most biologically active chemicals present in cigarette smoke and smokeless tobacco.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The progressive elucidation of the molecular pathogenesis of cancer has fueled the rational development of targeted drugs for patient populations stratified by genetic characteristics. Here we discuss general challenges relating to molecular diagnostics and describe predictive biomarkers for personalized cancer medicine. We also highlight resistance mechanisms for epidermal growth factor receptor (EGFR) kinase inhibitors in lung cancer. We envisage a future requiring the use of longitudinal genome sequencing and other omics technologies alongside combinatorial treatment to overcome cellular and molecular heterogeneity and prevent resistance caused by clonal evolution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arbeit an der Bibliothek noch nicht eingelangt - Daten nicht geprüft

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cancer remains an undetermined question for modern medicine. Every year millions of people ranging from children to adult die since the modern treatment is unable to meet the challenge. Research must continue in the area of new biomarkers for tumors. Molecular biology has evolved during last years; however, this knowledge has not been applied into the medicine. Biological findings should be used to improve diagnostics and treatment modalities. In this thesis, human formalin-fixed paraffin embedded colorectal and breast cancer samples were used to optimize the double immunofluorescence staining protocol. Also, immunohistochemistry was performed in order to visualize expression patterns of each biomarker. Concerning double immunofluorescence, feasibility of primary antibodies raised in different and same host species was also tested. Finally, established methods for simultaneous multicolor immunofluorescence imaging of formalin-fixed paraffin embedded specimens were applied for the detection of pairs of potential biomarkers of colorectal cancer (EGFR, pmTOR, pAKT, Vimentin, Cytokeratin Pan, Ezrin, E-cadherin) and breast cancer (Securin, PTTG1IP, Cleaved caspase 3, ki67).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Quantitative imaging in oncology aims at developing imaging biomarkers for diagnosis and prediction of cancer aggressiveness and therapy response before any morphological change become visible. This Thesis exploits Computed Tomography perfusion (CTp) and multiparametric Magnetic Resonance Imaging (mpMRI) for investigating diverse cancer features on different organs. I developed a voxel-based image analysis methodology in CTp and extended its use to mpMRI, for performing precise and accurate analyses at single-voxel level. This is expected to improve reproducibility of measurements and cancer mechanisms’ comprehension and clinical interpretability. CTp has not entered the clinical routine yet, although its usefulness in the monitoring of cancer angiogenesis, due to different perfusion computing methods yielding unreproducible results. Instead, machine learning applications in mpMRI, useful to detect imaging features representative of cancer heterogeneity, are mostly limited to clinical research, because of results’ variability and difficult interpretability, which make clinicians not confident in clinical applications. In hepatic CTp, I investigated whether, and under what conditions, two widely adopted perfusion methods, Maximum Slope (MS) and Deconvolution (DV), could yield reproducible parameters. To this end, I developed signal processing methods to model the first pass kinetics and remove any numerical cause hampering the reproducibility. In mpMRI, I proposed a new approach to extract local first-order features, aiming at preserving spatial reference and making their interpretation easier. In CTp, I found out the cause of MS and DV non-reproducibility: MS and DV represent two different states of the system. Transport delays invalidate MS assumptions and, by correcting MS formulation, I have obtained the voxel-based equivalence of the two methods. In mpMRI, the developed predictive models allowed (i) detecting rectal cancers responding to neoadjuvant chemoradiation showing, at pre-therapy, sparse coarse subregions with altered density, and (ii) predicting clinically significant prostate cancers stemming from the disproportion between high- and low- diffusivity gland components.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polycyclic aromatic hydrocarbons (PAH) are widely distributed in the environment, and some are carcinogenic to human beings. The study of biomarkers has helped clarify the nature and magnitude of the human health risks posed by such substances. This article provides a review of the state-of-the-art on PAH biomarkers for human health risk assessment and also discusses their applicability within the context of environmental management in Brazil. The article discusses the methodologies for determination of some biomarkers such as 1-hydroxypyrene and PAH-DNA adducts. Cytogenetic markers, frequency of chromosomal aberrations, and micronucleus induction were considered for the evaluation of cancer risk. The current stage of studies on validation of such biomarkers was also approached.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Prostate cancer cells in primary tumors have been typed CD10(-)/CD13(-)/CD24(hi)/CD26(+)/CD38(lo)/CD44(-)/CD104(-). This CD phenotype suggests a lineage relationship between cancer cells and luminal cells. The Gleason grade of tumors is a descriptive of tumor glandular differentiation. Higher Gleason scores are associated with treatment failure. Methods: CD26(+) cancer cells were isolated from Gleason 3+3 (G3) and Gleason 4+4 (G4) tumors by cell sorting, and their gene expression or transcriptome was determined by Affymetrix DNA array analysis. Dataset analysis was used to determine gene expression similarities and differences between G3 and G4 as well as to prostate cancer cell lines and histologically normal prostate luminal cells. Results: The G3 and G4 transcriptomes were compared to those of prostatic cell types of non-cancer, which included luminal, basal, stromal fibromuscular, and endothelial. A principal components analysis of the various transcriptome datasets indicated a closer relationship between luminal and G3 than luminal and G4. Dataset comparison also showed that the cancer transcriptomes differed substantially from those of prostate cancer cell lines. Conclusions: Genes differentially expressed in cancer are potential biomarkers for cancer detection, and those differentially expressed between G3 and G4 are potential biomarkers for disease stratification given that G4 cancer is associated with poor outcomes. Differentially expressed genes likely contribute to the prostate cancer phenotype and constitute the signatures of these particular cancer cell types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we assessed the protective effect of topical application of Pothomorphe umbellata extract on ultraviolet B (UVB)-induced skin lesion parameters in hairless mouse epidermis. A single dose of UVB irradiation (0.23 kJ/m(2)) resulted in a significant decrease in thymine dimer-positive cells and apoptotic sunburn cells, with an increase in p53 and proliferating cell nuclear antigen-positive cells in the epidermis. After 5 weeks (total dose 13.17 kJ/m(2)) and 15 weeks (total dose 55.51 kJ/m(2)) of irradiation, P. umbellata treatment inhibited the hyperplasic response and induced an increase in p53-positive cells. These findings suggest that P. umbellata extract affords protection against UVB-induced skin lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Epithelial to mesenchymal transition (EMT) is a process implicated in cancer progression in which the underlying cellular changes have been identified mainly using in vitro models. We determined the expression of some putative EMT biomarkers including E-cadherin, beta-catenin, zinc finger factor Snail (Snail), transforming growth factor beta 1 (TGF beta 1), TGF beta type II receptor (TBRII) and the HGF receptor (c-met) and their possible correlation to progression and overall survival in a series of breast ductal carcinoma in situ (DCIS) and invasive ductal carcinomas (IDC). Biomarkers were immunohistochemically determined in 55 IDC specimens from which 21 had lymph node metastases and in 95 DCIS specimens, 46 of these cases associated to invasive carcinoma, in a tissue microarray (TMA). Positive cytoplasmic staining of TGF beta 1 (78.2%), c-met (43.6%), Snail (34.5%), TBRII (100%), membranous E-cadherin (74.5%) and membranous/cytoplasmic beta-catenin (71%) were detected in the IDC samples. Metastatic lymph node samples displayed similar frequencies. A significant increase of c-met and TGF beta 1 positivity along DCIS to IDC progression was noted but only TGF beta 1 positivity was associated with presence of lymph node metastases and advanced stages in IDC. The evaluation of the other EMT markers in DCIS did not show differences in positivity rate as compared to invasive carcinomas. DCIS either pure or associated to IDC showed similar expression of the analyzed biomarkers. All the carcinomas exhibited positive expression of TBRII. Associations between the markers, determined by Spearman`s correlation coefficient, showed a significant association between TGF beta 1 and respectively E-cadherin, beta-catenin and cmet in DCIS cases, but in invasive carcinomas only cadherin and catenin were positively correlated. Kaplan-Meier survival curves revealed that none of the EMT biomarkers analyzed were correlated with survival, which was significantly determined only by clinical and hormone receptor parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Malignancies of the biliary and pancreatic systems are associated with a poor prognosis. However, ampullary cancer carries a better prognosis and is often diagnosed when curative treatment is still possible. Accurate staging is important for the determination of the most appropriate treatment option. Objectives: (1) To determine the test performance characteristics of EUS and CT in loco-regional staging of ampullary neoplasms, and (2) to determine the impact of CT scan results on the test performance characteristics of EUS. Design and Setting: Prospective single-arm intervention study performed in 2 academic hospitals. Results and Main Outcome Measurements: Thirty-seven patients were screened and 33 staged with EUS and CT A total of 27 patients (13 men; mean age, 69.5 years; mean serum bilirubin level, 12.6 mg/dL) with locally advanced disease completed the protocol with EUS and CT and underwent surgical resection. Tumor classifications were as follows: 2 patients (7.4%), T1 tumors; 13 patients (48.1%), T2 tumors; and 12 patients (44.4%), T3 tumors, as per surgical pathology. Seventeen tumors (62.9%) were classified as NO and 10 (37.1%) as NI. The difference in proportion of correct tumor (74.1% vs 51.8%; P =.15, 95% CI, -0.06-0-50) and lymph node (81.4% vs; 55.5%; P =.07, 95% Cl, -0.01-0.53) staging by EUS and CT, respectively, was not statistically significantly different. However, the strength of tumor (kappa 0.51 vs 0.11) and nodal (kappa 0.59 vs 0.05) agreement with pathology was statistically significantly higher for EUS than for CT (P <.05). EUS was more sensitive and specific than CT for tumor and nodal staging, and the association of CT to EUS data did not improve the final test accuracy Limitation: Low number of T1 tumors. Conclusions: EUS is in accurate diagnostic test and exhibits a high level of agreement with surgical pathology. CT findings do not improve the test performance characteristics of EUS. Therefore, the evaluation for metastatic disease should not be compromised by CT protocols that aim to perform tumor and nodal staging. Further studies to determine the role of specialized CT protocols in patients with ampullary malignancies are needed. (Gastrointest Endosc 2009;70:290-6.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Marijuana contains carcinogens similar to tobacco smoke and has been suggested by relatively small studies to increase the risk of head and neck cancer (HNC). Because tobacco is a major risk factor for HNC, large studies with substantial numbers of never tobacco users could help to clarify whether marijuana smoking is independently associated with HNC risk. Methods: We pooled self-reported interview data on marijuana smoking and known HNC risk factors on 4,029 HNC cases and 5,015 controls from five case-control studies within the INHANCE Consortium. Subanalyses were conducted among never tobacco users (493 cases and 1,813 controls) and among individuals who did not consume alcohol or smoke tobacco (237 cases and 887 controls). Results: The risk of HNC was not elevated by ever marijuana smoking [odds ratio (OR), 0.88; 95% confidence intervals (95% Cl), 0.67-1.16], and there was no increasing risk associated with increasing frequency, duration, or cumulative consumption of marijuana smoking. An increased risk of HNC associated with marijuana use was not detected among never tobacco users (OR, 0.93; 95% Cl, 0.63-1.37; three studies) nor among individuals who did not drink alcohol and smoke tobacco (OR, 1.06; 95% Cl, 0.47-2.38; two studies). Conclusion: Our results are consistent with the notion that infrequent marijuana smoking does not confer a risk of these malignancies. Nonetheless, because the prevalence of frequent marijuana smoking was low in most of the contributing studies, we could not rule out a moderately increased risk, particularly among subgroups without exposure to tobacco and alcohol. (Cancer Epidemiol Biomarkers Prev 2009;18(5):1544-51)