959 resultados para Nonlinear System


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rigorous upper bounds are derived that limit the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow in a continuously stratified, quasi-geostrophic, semi-infinite fluid. Bounds are obtained bath on the depth-integrated eddy potential enstrophy and on the eddy available potential energy (APE) at the ground. The method used to derive the bounds is essentially analogous to that used in Part I of this study for the two-layer model: it relies on the existence of a nonlinear Liapunov (normed) stability theorem, which is a finite-amplitude generalization of the Charney-Stern theorem. As in Part I, the bounds are valid both for conservative (unforced, inviscid) flow, as well as for forced-dissipative flow when the dissipation is proportional to the potential vorticity in the interior, and to the potential temperature at the ground. The character of the results depends on the dimensionless external parameter γ = f02ξ/β0N2H, where ξ is the maximum vertical shear of the zonal wind, H is the density scale height, and the other symbols have their usual meaning. When γ ≫ 1, corresponding to “deep” unstable modes (vertical scale ≈H), the bound on the eddy potential enstrophy is just the total potential enstrophy in the system; but when γ≪1, corresponding to ‘shallow’ unstable modes (vertical scale ≈γH), the eddy potential enstrophy can be bounded well below the total amount available in the system. In neither case can the bound on the eddy APE prevent a complete neutralization of the surface temperature gradient which is in accord with numerical experience. For the special case of the Charney model of baroclinic instability, and in the limit of infinitesimal initial eddy disturbance amplitude, the bound states that the dimensionless eddy potential enstrophy cannot exceed (γ + 1)2/24&gamma2h when γ ≥ 1, or 1/6;&gammah when γ ≤ 1; here h = HN/f0L is the dimensionless scale height and L is the width of the channel. These bounds are very similar to (though of course generally larger than) ad hoc estimates based on baroclinic-adjustment arguments. The possibility of using these kinds of bounds for eddy-amplitude closure in a transient-eddy parameterization scheme is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A rigorous bound is derived which limits the finite-amplitude growth of arbitrary nonzonal disturbances to an unstable baroclinic zonal flow within the context of the two-layer model. The bound is valid for conservative (unforced) flow, as well as for forced-dissipative flow that when the dissipation is proportional to the potential vorticity. The method used to derive the bound relies on the existence of a nonlinear Liapunov (normed) stability theorem for subcritical flows, which is a finite-amplitude generalization of the Charney-Stern theorem. For the special case of the Philips model of baroclinic instability, and in the limit of infinitesimal initial nonzonal disturbance amplitude, an improved form of the bound is possible which states that the potential enstrophy of the nonzonal flow cannot exceed ϵβ2, where ϵ = (U − Ucrit)/Ucrit is the (relative) supereriticality. This upper bound turns out to be extremely similar to the maximum predicted by the weakly nonlinear theory. For unforced flow with ϵ < 1, the bound demonstrates that the nonzonal flow cannot contain all of the potential enstrophy in the system; hence in this range of initial supercriticality the total flow must remain, in a certain sense, “close” to a zonal state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper ensembles of forecasts (of up to six hours) are studied from a convection-permitting model with a representation of model error due to unresolved processes. The ensemble prediction system (EPS) used is an experimental convection-permitting version of the UK Met Office’s 24- member Global and Regional Ensemble Prediction System (MOGREPS). The method of representing model error variability, which perturbs parameters within the model’s parameterisation schemes, has been modified and we investigate the impact of applying this scheme in different ways. These are: a control ensemble where all ensemble members have the same parameter values; an ensemble where the parameters are different between members, but fixed in time; and ensembles where the parameters are updated randomly every 30 or 60 min. The choice of parameters and their ranges of variability have been determined from expert opinion and parameter sensitivity tests. A case of frontal rain over the southern UK has been chosen, which has a multi-banded rainfall structure. The consequences of including model error variability in the case studied are mixed and are summarised as follows. The multiple banding, evident in the radar, is not captured for any single member. However, the single band is positioned in some members where a secondary band is present in the radar. This is found for all ensembles studied. Adding model error variability with fixed parameters in time does increase the ensemble spread for near-surface variables like wind and temperature, but can actually decrease the spread of the rainfall. Perturbing the parameters periodically throughout the forecast does not further increase the spread and exhibits “jumpiness” in the spread at times when the parameters are perturbed. Adding model error variability gives an improvement in forecast skill after the first 2–3 h of the forecast for near-surface temperature and relative humidity. For precipitation skill scores, adding model error variability has the effect of improving the skill in the first 1–2 h of the forecast, but then of reducing the skill after that. Complementary experiments were performed where the only difference between members was the set of parameter values (i.e. no initial condition variability). The resulting spread was found to be significantly less than the spread from initial condition variability alone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper introduces a new adaptive nonlinear equalizer relying on a radial basis function (RBF) model, which is designed based on the minimum bit error rate (MBER) criterion, in the system setting of the intersymbol interference channel plus a co-channel interference. Our proposed algorithm is referred to as the on-line mixture of Gaussians estimator aided MBER (OMG-MBER) equalizer. Specifically, a mixture of Gaussians based probability density function (PDF) estimator is used to model the PDF of the decision variable, for which a novel on-line PDF update algorithm is derived to track the incoming data. With the aid of this novel on-line mixture of Gaussians based sample-by-sample updated PDF estimator, our adaptive nonlinear equalizer is capable of updating its equalizer’s parameters sample by sample to aim directly at minimizing the RBF nonlinear equalizer’s achievable bit error rate (BER). The proposed OMG-MBER equalizer significantly outperforms the existing on-line nonlinear MBER equalizer, known as the least bit error rate equalizer, in terms of both the convergence speed and the achievable BER, as is confirmed in our simulation study

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper details a strategy for modifying the source code of a complex model so that the model may be used in a data assimilation context, {and gives the standards for implementing a data assimilation code to use such a model}. The strategy relies on keeping the model separate from any data assimilation code, and coupling the two through the use of Message Passing Interface (MPI) {functionality}. This strategy limits the changes necessary to the model and as such is rapid to program, at the expense of ultimate performance. The implementation technique is applied in different models with state dimension up to $2.7 \times 10^8$. The overheads added by using this implementation strategy in a coupled ocean-atmosphere climate model are shown to be an order of magnitude smaller than the addition of correlated stochastic random errors necessary for some nonlinear data assimilation techniques.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A practical orthogonal frequency-division multiplexing (OFDM) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. In this contribution, we advocate a novel nonlinear equalization scheme for OFDM Hammerstein systems. We model the nonlinear HPA, which represents the static nonlinearity of the OFDM Hammerstein channel, by a B-spline neural network, and we develop a highly effective alternating least squares algorithm for estimating the parameters of the OFDM Hammerstein channel, including channel impulse response coefficients and the parameters of the B-spline model. Moreover, we also use another B-spline neural network to model the inversion of the HPA’s nonlinearity, and the parameters of this inverting B-spline model can easily be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalization of the OFDM Hammerstein channel can then be accomplished by the usual one-tap linear equalization as well as the inverse B-spline neural network model obtained. The effectiveness of our nonlinear equalization scheme for OFDM Hammerstein channels is demonstrated by simulation results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In general, particle filters need large numbers of model runs in order to avoid filter degeneracy in high-dimensional systems. The recently proposed, fully nonlinear equivalent-weights particle filter overcomes this requirement by replacing the standard model transition density with two different proposal transition densities. The first proposal density is used to relax all particles towards the high-probability regions of state space as defined by the observations. The crucial second proposal density is then used to ensure that the majority of particles have equivalent weights at observation time. Here, the performance of the scheme in a high, 65 500 dimensional, simplified ocean model is explored. The success of the equivalent-weights particle filter in matching the true model state is shown using the mean of just 32 particles in twin experiments. It is of particular significance that this remains true even as the number and spatial variability of the observations are changed. The results from rank histograms are less easy to interpret and can be influenced considerably by the parameter values used. This article also explores the sensitivity of the performance of the scheme to the chosen parameter values and the effect of using different model error parameters in the truth compared with the ensemble model runs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a novel algorithm for concurrent model state and parameter estimation in nonlinear dynamical systems. The new scheme uses ideas from three dimensional variational data assimilation (3D-Var) and the extended Kalman filter (EKF) together with the technique of state augmentation to estimate uncertain model parameters alongside the model state variables in a sequential filtering system. The method is relatively simple to implement and computationally inexpensive to run for large systems with relatively few parameters. We demonstrate the efficacy of the method via a series of identical twin experiments with three simple dynamical system models. The scheme is able to recover the parameter values to a good level of accuracy, even when observational data are noisy. We expect this new technique to be easily transferable to much larger models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A novel technique for selecting the poles of orthonormal basis functions (OBF) in Volterra models of any order is presented. It is well-known that the usual large number of parameters required to describe the Volterra kernels can be significantly reduced by representing each kernel using an appropriate basis of orthonormal functions. Such a representation results in the so-called OBF Volterra model, which has a Wiener structure consisting of a linear dynamic generated by the orthonormal basis followed by a nonlinear static mapping given by the Volterra polynomial series. Aiming at optimizing the poles that fully parameterize the orthonormal bases, the exact gradients of the outputs of the orthonormal filters with respect to their poles are computed analytically by using a back-propagation-through-time technique. The expressions relative to the Kautz basis and to generalized orthonormal bases of functions (GOBF) are addressed; the ones related to the Laguerre basis follow straightforwardly as a particular case. The main innovation here is that the dynamic nature of the OBF filters is fully considered in the gradient computations. These gradients provide exact search directions for optimizing the poles of a given orthonormal basis. Such search directions can, in turn, be used as part of an optimization procedure to locate the minimum of a cost-function that takes into account the error of estimation of the system output. The Levenberg-Marquardt algorithm is adopted here as the optimization procedure. Unlike previous related work, the proposed approach relies solely on input-output data measured from the system to be modeled, i.e., no information about the Volterra kernels is required. Examples are presented to illustrate the application of this approach to the modeling of dynamic systems, including a real magnetic levitation system with nonlinear oscillatory behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is concerned with the existence of a global attractor for the nonlinear beam equation, with nonlinear damping and source terms, u(tt) + Delta(2)u -M (integral(Omega)vertical bar del u vertical bar(2)dx) Delta u + f(u) + g(u(t)) = h in Omega x R(+), where Omega is a bounded domain of R(N), M is a nonnegative real function and h is an element of L(2)(Omega). The nonlinearities f(u) and g(u(t)) are essentially vertical bar u vertical bar(rho) u - vertical bar u vertical bar(sigma) u and vertical bar u(t)vertical bar(r) u(t) respectively, with rho, sigma, r > 0 and sigma < rho. This kind of problem models vibrations of extensible beams and plates. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper studies a class of a system of linear retarded differential difference equations with several parameters. It presents some sufficient conditions under which no stability changes for an equilibrium point occurs. Application of these results is given. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the transition to spatio-temporal chaos in spatially extended nonlinear dynamical systems possessing an invariant subspace with a low-dimensional attractor. When the latter is chaotic and the subspace is transversely stable we have a spatially homogeneous state only. The onset of spatio-temporal chaos, i.e. the excitation of spatially inhomogeneous modes, occur through the loss of transversal stability of some unstable periodic orbit embedded in the chaotic attractor lying in the invariant subspace. This is a bubbling transition, since there is a switching between spatially homogeneous and nonhomogeneous states with statistical properties of on-off intermittency. Hence the onset of spatio-temporal chaos depends critically both on the existence of a chaotic attractor in the invariant subspace and its being transversely stable or unstable. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Letter we deal with a nonlinear Schrodinger equation with chaotic, random, and nonperiodic cubic nonlinearity. Our goal is to study the soliton evolution, with the strength of the nonlinearity perturbed in the space and time coordinates and to check its robustness under these conditions. Here we show that the chaotic perturbation is more effective in destroying the soliton behavior, when compared with random or nonperiodic perturbation. For a real system, the perturbation can be related to, e.g., impurities in crystalline structures, or coupling to a thermal reservoir which, on the average, enhances the nonlinearity. We also discuss the relevance of such random perturbations to the dynamics of Bose-Einstein condensates and their collective excitations and transport. (C) 2010 Elsevier B.V. All rights reserved.