923 resultados para Natural Language Processing,Recommender Systems,Android,Applicazione mobile


Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi è stata incentrata sul gioco «Indovina chi?» per l’identificazione da parte del robot Nao di un personaggio tramite la sua descrizione. In particolare la descrizione avviene tramite domande e risposte L’obiettivo della tesi è la progettazione di un sistema in grado di capire ed elaborare dei dati comunicati usando un sottoinsieme del linguaggio naturale, estrapolarne le informazioni chiave e ottenere un riscontro con informazioni date in precedenza. Si è quindi programmato il robot Nao in modo che sia in grado di giocare una partita di «Indovina chi?» contro un umano comunicando tramite il linguaggio naturale. Sono state implementate regole di estrazione e categorizzazione per la comprensione del testo utilizzando Cogito, una tecnologia brevettata dall'azienda Expert System. In questo modo il robot è in grado di capire le risposte e rispondere alle domande formulate dall'umano mediante il linguaggio naturale. Per il riconoscimento vocale è stata utilizzata l'API di Google e PyAudio per l'utilizzo del microfono. Il programma è stato implementato in Python e i dati dei personaggi sono memorizzati in un database che viene interrogato e modificato dal robot. L'algoritmo del gioco si basa su calcoli probabilistici di vittoria del robot e sulla scelta delle domande da proporre in base alle risposte precedentemente ricevute dall'umano. Le regole semantiche realizzate danno la possibilità al giocatore di formulare frasi utilizzando il linguaggio naturale, inoltre il robot è in grado di distinguere le informazioni che riguardano il personaggio da indovinare senza farsi ingannare. La percentuale di vittoria del robot ottenuta giocando 20 partite è stata del 50%. Il data base è stato sviluppato in modo da poter realizzare un identikit completo di una persona, oltre a quello dei personaggi del gioco. È quindi possibile ampliare il progetto per altri scopi, oltre a quello del gioco, nel campo dell'identificazione.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article discusses the detection of discourse markers (DM) in dialog transcriptions, by human annotators and by automated means. After a theoretical discussion of the definition of DMs and their relevance to natural language processing, we focus on the role of like as a DM. Results from experiments with human annotators show that detection of DMs is a difficult but reliable task, which requires prosodic information from soundtracks. Then, several types of features are defined for automatic disambiguation of like: collocations, part-of-speech tags and duration-based features. Decision-tree learning shows that for like, nearly 70% precision can be reached, with near 100% recall, mainly using collocation filters. Similar results hold for well, with about 91% precision at 100% recall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta tesina indaga en el ámbito de las Tecnologías de la Información sobre los diferentes desarrollos realizados en la interpretación automática de la semántica de textos y su relación con los Sistemas de Recuperación de Información. Partiendo de una revisión bibliográfica selectiva se busca sistematizar la documentación estableciendo de manera evolutiva los principales antecedentes y técnicas, sintetizando los conceptos fundamentales y resaltando los aspectos que justifican la elección de unos u otros procedimientos en la resolución de los problemas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the beginning of the 90s, ontology development was similar to an art: ontology developers did not have clear guidelines on how to build ontologies but only some design criteria to be followed. Work on principles, methods and methodologies, together with supporting technologies and languages, made ontology development become an engineering discipline, the so-called Ontology Engineering. Ontology Engineering refers to the set of activities that concern the ontology development process and the ontology life cycle, the methods and methodologies for building ontologies, and the tool suites and languages that support them. Thanks to the work done in the Ontology Engineering field, the development of ontologies within and between teams has increased and improved, as well as the possibility of reusing ontologies in other developments and in final applications. Currently, ontologies are widely used in (a) Knowledge Engineering, Artificial Intelligence and Computer Science, (b) applications related to knowledge management, natural language processing, e-commerce, intelligent information integration, information retrieval, database design and integration, bio-informatics, education, and (c) the Semantic Web, the Semantic Grid, and the Linked Data initiative. In this paper, we provide an overview of Ontology Engineering, mentioning the most outstanding and used methodologies, languages, and tools for building ontologies. In addition, we include some words on how all these elements can be used in the Linked Data initiative.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vivimos en una época en la que cada vez existe una mayor cantidad de información. En el dominio de la salud la historia clínica digital ha permitido digitalizar toda la información de los pacientes. Estas historias clínicas digitales contienen una gran cantidad de información valiosa escrita en forma narrativa que sólo podremos extraer recurriendo a técnicas de procesado de lenguaje natural. No obstante, si se quiere realizar búsquedas sobre estos textos es importante analizar que la información relativa a síntomas, enfermedades, tratamientos etc. se puede refererir al propio paciente o a sus antecentes familiares, y que ciertos términos pueden aparecer negados o ser hipotéticos. A pesar de que el español ocupa la segunda posición en el listado de idiomas más hablados con más de 500 millones de hispano hablantes, hasta donde tenemos de detección de la negación, probabilidad e histórico en textos clínicos en español. Por tanto, este Trabajo Fin de Grado presenta una implementación basada en el algoritmo ConText para la detección de la negación, probabilidad e histórico en textos clínicos escritos en español. El algoritmo se ha validado con 454 oraciones que incluían un total de 1897 disparadores obteniendo unos resultado de 83.5 %, 96.1 %, 96.9 %, 99.7% y 93.4% de exactitud con condiciones afirmados, negados, probable, probable negado e histórico respectivamente. ---ABSTRACT---We live in an era in which there is a huge amount of information. In the domain of health, the electronic health record has allowed to digitize all the information of the patients. These electronic health records contain valuable information written in narrative form that can only be extracted using techniques of natural language processing. However, if you want to search on these texts is important to analyze if the relative information about symptoms, diseases, treatments, etc. are referred to the patient or family casework, and that certain terms may appear negated or be hypothesis. Although Spanish is the second spoken language with more than 500 million speakers, there seems to be no method of detection of negation, hypothesis or historical in medical texts written in Spanish. Thus, this bachelor’s final degree presents an implementation based on the ConText algorithm for the detection of negation, hypothesis and historical in medical texts written in Spanish. The algorithm has been validated with 454 sentences that included a total of 1897 triggers getting a result of 83.5 %, 96.1 %, 96.9 %, 99.7% and 93.4% accuracy with affirmed, negated, hypothesis, negated hypothesis and historical respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a dataset componsed of domain-specific sentiment lexicons in six languages for two domains. We used existing collections of reviews from Trip Advisor, Amazon, the Stanford Network Analysis Project and the OpinRank Review Dataset. We use an RDF model based on the lemon and Marl formats to represent the lexicons. We describe the methodology that we applied to generate the domain-specific lexicons and we provide access information to our datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El presente Trabajo Fin de Grado (TFG) surge de la necesidad de disponer de tecnologías que faciliten el Procesamiento de Lenguaje Natural (NLP) en español dentro del sector de la medicina. Centrado concretamente en la extracción de conocimiento de las historias clínicas electrónicas (HCE), que recogen toda la información relacionada con la salud del paciente y en particular, de los documentos recogidos en dichas historias, pretende la obtención de todos los términos relacionados con la medicina. El Procesamiento de Lenguaje Natural permite la obtención de datos estructurados a partir de información no estructurada. Estas técnicas permiten un análisis de texto que genera etiquetas aportando significado semántico a las palabras para la manipulación de información. A partir de la investigación realizada del estado del arte en NLP y de las tecnologías existentes para otras lenguas, se propone como solución un módulo de anotación de términos médicos extraídos de documentos clínicos. Como términos médicos se han considerado síntomas, enfermedades, partes del cuerpo o tratamientos obtenidos de UMLS, una ontología categorizada que agrega distintas fuentes de datos médicos. Se ha realizado el diseño y la implementación del módulo así como el análisis de los resultados obtenidos realizando una evaluación con treinta y dos documentos que contenían 1372 menciones de terminología médica y que han dado un resultado medio de Precisión: 70,4%, Recall: 36,2%, Accuracy: 31,4% y F-Measure: 47,2%.---ABSTRACT---This Final Thesis arises from the need for technologies that facilitate the Natural Language Processing (NLP) in Spanish in the medical sector. Specifically it is focused on extracting knowledge from Electronic Health Records (EHR), which contain all the information related to the patient's health and, in particular, it expects to obtain all the terms related to medicine from the documents contained in these records. Natural Language Processing allows us to obtain structured information from unstructured data. These techniques enable analysis of text generating labels providing semantic meaning to words for handling information. From the investigation of the state of the art in NLP and existing technologies in other languages, an annotation module of medical terms extracted from clinical documents is proposed as a solution. Symptoms, diseases, body parts or treatments are considered part of the medical terms contained in UMLS ontology which is categorized joining different sources of medical data. This project has completed the design and implementation of a module and the analysis of the results have been obtained. Thirty two documents which contain 1372 mentions of medical terminology have been evaluated and the average results obtained are: Precision: 70.4% Recall: 36.2% Accuracy: 31.4% and F-Measure: 47.2%.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Los medios sociales han revolucionado la manera en la que los consumidores se relacionan entre sí y con las marcas. Las opiniones publicadas en dichos medios tienen un poder de influencia en las decisiones de compra tan importante como las campañas de publicidad. En consecuencia, los profesionales del marketing cada vez dedican mayores esfuerzos e inversión a la obtención de indicadores que permitan medir el estado de salud de las marcas a partir de los contenidos digitales generados por sus consumidores. Dada la naturaleza no estructurada de los contenidos publicados en los medios sociales, la tecnología usada para procesar dichos contenidos ha menudo implementa técnicas de Inteligencia Artificial, tales como algoritmos de procesamiento de lenguaje natural, aprendizaje automático y análisis semántico. Esta tesis, contribuye al estado de la cuestión, con un modelo que permite estructurar e integrar la información publicada en medios sociales, y una serie de técnicas cuyos objetivos son la identificación de consumidores, así como la segmentación psicográfica y sociodemográfica de los mismos. La técnica de identificación de consumidores se basa en la huella digital de los dispositivos que utilizan para navegar por la Web y es tolerante a los cambios que se producen con frecuencia en dicha huella digital. Las técnicas de segmentación psicográfica descritas obtienen la posición en el embudo de compra de los consumidores y permiten clasificar las opiniones en función de una serie de atributos de marketing. Finalmente, las técnicas de segmentación sociodemográfica permiten obtener el lugar de residencia y el género de los consumidores. ABSTRACT Social media has revolutionised the way in which consumers relate to each other and with brands. The opinions published in social media have a power of influencing purchase decisions as important as advertising campaigns. Consequently, marketers are increasing efforts and investments for obtaining indicators to measure brand health from the digital content generated by consumers. Given the unstructured nature of social media contents, the technology used for processing such contents often implements Artificial Intelligence techniques, such as natural language processing, machine learning and semantic analysis algorithms. This thesis contributes to the State of the Art, with a model for structuring and integrating the information posted on social media, and a number of techniques whose objectives are the identification of consumers, as well as their socio-demographic and psychographic segmentation. The consumer identification technique is based on the fingerprint of the devices they use to surf the Web and is tolerant to the changes that occur frequently in such fingerprint. The psychographic profiling techniques described infer the position of consumer in the purchase funnel, and allow to classify the opinions based on a series of marketing attributes. Finally, the socio-demographic profiling techniques allow to obtain the residence and gender of consumers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En los últimos años han surgido nuevos campos de las tecnologías de la información que exploran el tratamiento de la gran cantidad de datos digitales existentes y cómo transformarlos en conocimiento explícito. Las técnicas de Procesamiento del Lenguaje Natural (NLP) son capaces de extraer información de los textos digitales presentados en forma narrativa. Además, las técnicas de machine learning clasifican instancias o ejemplos en función de sus atributos, en distintas categorías, aprendiendo de otros previamente clasificados. Los textos clínicos son una gran fuente de información no estructurada; en consecuencia, información no explotada en su totalidad. Algunos términos usados en textos clínicos se encuentran en una situación de afirmación, negación, hipótesis o histórica. La detección de esta situación es necesaria para la estructuración de información, pero a su vez tiene una gran complejidad. Extrayendo características lingüísticas de los elementos, o tokens, de los textos mediante NLP; transformando estos tokens en instancias y las características en atributos, podemos mediante técnicas de machine learning clasificarlos con el objetivo de detectar si se encuentran afirmados, negados, hipotéticos o históricos. La selección de los atributos que cada token debe tener para su clasificación, así como la selección del algoritmo de machine learning utilizado son elementos cruciales para la clasificación. Son, de hecho, los elementos que componen el modelo de clasificación. Consecuentemente, este trabajo aborda el proceso de extracción de características, selección de atributos y selección del algoritmo de machine learning para la detección de la negación en textos clínicos en español. Se expone un modelo para la clasificación que, mediante el algoritmo J48 y 35 atributos obtenidos de características lingüísticas (morfológicas y sintácticas) y disparadores de negación, detecta si un token está negado en 465 frases provenientes de textos clínicos con un F-Score del 73%, una exhaustividad del 66% y una precisión del 81% con una validación cruzada de 10 iteraciones. ---ABSTRACT--- New information technologies have emerged in the recent years which explore the processing of the huge amount of existing digital data and its transformation into knowledge. Natural Language Processing (NLP) techniques are able to extract certain features from digital texts. Additionally, through machine learning techniques it is feasible to classify instances according to different categories, learning from others previously classified. Clinical texts contain great amount of unstructured data, therefore information not fully exploited. Some terms (tokens) in clinical texts appear in different situations such as affirmed, negated, hypothetic or historic. Detecting this situation is necessary for the structuring of this data, however not simple. It is possible to detect whether if a token is negated, affirmed, hypothetic or historic by extracting its linguistic features by NLP; transforming these tokens into instances, the features into attributes, and classifying these instances through machine learning techniques. Selecting the attributes each instance must have, and choosing the machine learning algorithm are crucial issues for the classification. In fact, these elements set the classification model. Consequently, this work approaches the features retrieval as well as the attributes and algorithm selection process used by machine learning techniques for the detection of negation in clinical texts in Spanish. We present a classification model which, through J48 algorithm and 35 attributes from linguistic features (morphologic and syntactic) and negation triggers, detects whether if a token is negated in 465 sentences from historical records, with a result of 73% FScore, 66% recall and 81% precision using a 10-fold cross-validation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation examines ancient historiographic citation methodologies in light of Mikhail Bakhtin’s dichotomy between polyphony and monologization. In particular, this dissertation argues that Eusebius of Caesarea’s Historia ecclesiastica (HE) abandons the monologic citation methodology typical of previous Greek and Hellenistic historiography and introduces a polyphonic citation methodology that influences subsequent late-ancient Christian historiography to varying degrees. Whereas Pre-Eusebian Greek and Hellenistic historiographers typically use citations to support the single authorial consciousness of the historiographer, Eusebius uses citations to counterbalance his own shortcomings as a witness to past events. Eusebius allows his citations to retain their own voice, even when they conflict with his. The result is a narrative that transcends the point of view of any single individual and makes multiple witnesses, including the narrator, available to the reader. Post-Eusebian late-ancient Christian historiographers exhibit the influence of Eusebius’ innovation, but they are not as intentional as Eusebius in their use of citation methodologies. Many subsequent Christian historiographers use both monologic and polyphonic citation methodologies. Their tendency to follow Eusebius’ practice of citing numerous lengthy citations sometimes emphasizes points of view that oppose the author’s point of view. When an opposing viewpoint surfaces in enough citations, a polyphonic citation methodology emerges. The reader holds the two different narrative strands in tension as the author continues to give voice to opposing viewpoints. After illustrating the citation methodologies with passages from numerous Greek, Hellenistic, and late ancient Christian historiographers, this dissertation concludes with a short computational analysis that uses natural language processing to reveal some broad trends that highlight the previous findings and suggest a possibility for future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este artículo presentamos COMPENDIUM, una herramienta de generación de resúmenes de textos modular. Esta herramienta se compone de un módulo central con cinco etapas bien diferenciadas: i) análisis lingüístico; ii) detección de redundancia; iii) identificación del tópico; iv) detección de relevancia; y v) generación del resumen, y una serie de módulos adicionales que permiten incrementar las funcionalidades de la herramienta permitiendo la generación de distintos tipos de resúmenes, como por ejemplo orientados a un tema concreto. Realizamos una evaluación exhaustiva en dos dominios distintos (noticias de prensa y documentos sobre lugares turísticos) y analizamos diferentes tipos de resúmenes generados con COMPENDIUM (mono-documento, multi-documento, genéricos y orientados a un tema). Además, comparamos nuestro sistema con otros sistemas de generación de resúmenes actuales. Los resultados que se obtienen demuestran que la herramienta COMPENDIUM es capaz de generar resúmenes competitivos para los distintos tipos de resúmenes propuestos.