DAEDALUS at SemEval-2014 Task 9: Comparing approaches for sentiment analysis in twitter


Autoria(s): Villena Román, Julio; García Morera, Janine; González Cristóbal, José Carlos
Data(s)

2014

Resumo

This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets.

Formato

application/pdf

Identificador

http://oa.upm.es/35358/

Idioma(s)

eng

Publicador

E.T.S.I. Telecomunicación (UPM)

Relação

http://oa.upm.es/35358/1/INVE_MEM_2014_192846.pdf

info:eu-repo/semantics/altIdentifier/doi/null

Direitos

http://creativecommons.org/licenses/by-nc-nd/3.0/es/

info:eu-repo/semantics/openAccess

Fonte

8th International Workshop on Semantic Evaluation (SemEval 2014) | 8th International Workshop on Semantic Evaluation (SemEval 2014) | 23/08/2014 - 24/08/2014 | Dublin, Ireland

Palavras-Chave #Filología #Informática #Telecomunicaciones
Tipo

info:eu-repo/semantics/conferenceObject

Ponencia en Congreso o Jornada

PeerReviewed