DAEDALUS at SemEval-2014 Task 9: Comparing approaches for sentiment analysis in twitter
Data(s) |
2014
|
---|---|
Resumo |
This paper describes our participation at SemEval- 2014 sentiment analysis task, in both contextual and message polarity classification. Our idea was to com- pare two different techniques for sentiment analysis. First, a machine learning classifier specifically built for the task using the provided training corpus. On the other hand, a lexicon-based approach using natural language processing techniques, developed for a ge- neric sentiment analysis task with no adaptation to the provided training corpus. Results, though far from the best runs, prove that the generic model is more robust as it achieves a more balanced evaluation for message polarity along the different test sets. |
Formato |
application/pdf |
Identificador | |
Idioma(s) |
eng |
Publicador |
E.T.S.I. Telecomunicación (UPM) |
Relação |
http://oa.upm.es/35358/1/INVE_MEM_2014_192846.pdf info:eu-repo/semantics/altIdentifier/doi/null |
Direitos |
http://creativecommons.org/licenses/by-nc-nd/3.0/es/ info:eu-repo/semantics/openAccess |
Fonte |
8th International Workshop on Semantic Evaluation (SemEval 2014) | 8th International Workshop on Semantic Evaluation (SemEval 2014) | 23/08/2014 - 24/08/2014 | Dublin, Ireland |
Palavras-Chave | #Filología #Informática #Telecomunicaciones |
Tipo |
info:eu-repo/semantics/conferenceObject Ponencia en Congreso o Jornada PeerReviewed |