865 resultados para Membrane lipid composition
Resumo:
The electrochemical behavior of horseradish peroxidase (HRP) in the dimyristoyl phosphatidylcholine (DMPC) bilayer on the glassy carbon (GC) electrode was studied by cyclic voltammetry. The direct electron transfer of HRP was observed in the DMPC bilayer. Only a small cathodic peak was observed for HRP on the bare GC electrode. The electron transfer of HRP in the DMPC membrane is facilitated by DMPC membrane. UV-Vis and circular dichroism (CD) spectroscopy were used to study the interaction between HRP and DMPC membrane. On binding to the DMPC membrane the secondary structure of HRP remains unchanged while there is a substantial change in the conformation of the heme active site. Tapping mode atomic force microscopy (AFM) was first applied for the investigation on the structure of HRP adsorbed on supported phospholipid bilayer on the mica and on the bare mica. HRP molecules adsorb and aggregate on the mica without DMPC bilayer. The aggregation indicates an attractive interaction among the adsorbed molecules. The molecules are randomly distributed in the DMPC bilayer. The adsorption of HRP in the DMPC bilayer changes drastically the domains and defects in the DMPC bilayer due to a strong interaction between HRP and DMPC films.
Resumo:
The interaction of lanthanide ions with a supported bilayer lipid (1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine) membrane (sBLM) was investigated by cyclic voltammetry and ac impedance spectroscopy in this paper, Lanthanide can affect the conformation of the supported bilayer lipid membrane and cause pore formation. Through the pores, Fe(CN)(6)(3) (4) can reach the electrode surface and show its redox behaviour. Furthermore the redox currents or Fe(CN)(6)(3) (4) increased with increasing concentration of lanthanides and leveled off at 1.2 muM for Eu3+. The interaction ability of three lanthanides with sBLM follows the sequence: Eu3+ > Tb3+ > La3+.
Electrochemistry and spectroscopy study on the interaction of microperoxidase-11 with lipid membrane
Resumo:
The interaction of microperoxidase-11 (MP11) with cationic lipid vesicles of didodecyldimethylammonium bromide (DDAB) induces an alpha -helical conformation from random coil conformations in solution and this change then makes heme macrocycle more distorted. DDAB-induced MP11 conformations were investigated by cyclic votammetry (CV), circular dichroism (CD) and UV-vis spectrometry. All results indicate that the binding of MP11 in solution to DDAB vesicles and the ordered structure formation are driven by mostly electrostatic interaction between negatively charged residues in the undecapeptide and positively charged lipid headgroups on the membrane surface. Upon binding to DDAB, its half-peak potential was also changed. The mechanism of the interaction between MP11 and DDAB was also discussed. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Ferricyanide anion has usually been used as a marker of ion-channel sensors. In this work we first found that ferricyanide, itself, can act as a stimulus to regulate the permeability of sBLM prepared from didodecyldimethylammonium bromide (a kind of synthetic lipid) on a GC electrode. We used cyclic voltammetry and a.c. impedance to investigate this phenomenon. The interaction between sBLM and ferricyanide concerns time. Furthermore, we developed a sensor for ferricyanide anion. The ion-channel sensor is highly sensitive. It can detect ferricyanide concentration as low as 5 muM.
Resumo:
The obligate intracellular bacterium Chlamydia trachomatis is a major human pathogen and a main cause of genital and ocular diseases. During its intracellular cycle, C. trachomatis replicates inside a membrane-bound vacuole termed an "inclusion". Acquisition of lipids (and other nutrients) from the host cell is a critical step in chlamydial replication. Lipid droplets (LD) are ubiquitous, ER-derived neutral lipid-rich storage organelles surrounded by a phospholipids monolayer and associated proteins. Previous studies have shown that LDs accumulate at the periphery of, and eventually translocate into, the chlamydial inclusion. These observations point out to Chlamydia-mediated manipulation of LDs in infected cells, which may impact the function and thereby the protein composition of these organelles. By means of a label-free quantitative mass spectrometry approach we found that the LD proteome is modified in the context of C. trachomatis infection. We determined that LDs isolated from C. trachomatis-infected cells were enriched in proteins related to lipid metabolism, biosynthesis and LD-specific functions. Interestingly, consistent with the observation that LDs intimately associate with the inclusion, a subset of inclusion membrane proteins co-purified with LD protein extracts. Finally, genetic ablation of LDs negatively affected generation of C. trachomatis infectious progeny, consistent with a role for LD biogenesis in optimal chlamydial growth.
Resumo:
Previous research suggests that the digital cushion, a shock-absorbing structure in the claw, plays an important role in protecting cattle from lameness. This study aimed to assess the degree to which nutritional factors influence the composition of the digital cushion. This involved quantifying lipid content and fatty acid composition differences in digital cushion tissue from cattle offered diets with different amounts of linseed. Forty-six bulls were allocated to 1 of 4 treatments, which were applied for an average of 140 +/- 27 d during the finishing period. The treatments consisted of a linseed supplement offered once daily on top of the basal diet (grass silage:concentrate) at 0, 400, 800, or 1,200 g of supplement/animal per day. For each treatment, the concentrate offered was adjusted to ensure that total estimated ME intake was constant across treatments. Target BW at slaughter was 540 kg. Legs were collected in 3 batches after 120, 147 and 185 d on experiment. Six samples of the digital cushion were dissected from the right lateral hind claw of each animal. Lipids were extracted and expressed as a proportion of fresh tissue, and fatty acid composition of the digital cushion was determined by gas chromatography. Data were analyzed by ANOVA, with diet, location within the digital cushion, and their interactions as fixed effects and fat content (grams per 100 g of tissue) as a covariate. Linear or quadratic contrasts were examined. The lipid content of digital cushion tissue differed between sampling locations (P
Resumo:
Aging of the human retina is characterized by progressive pathology, which can lead to vision loss. This progression is believed to involve reactive metabolic intermediates reacting with constituents of Bruch's membrane, significantly altering its physiochemical nature and function. We aimed to replace a myriad of techniques following these changes with one, Raman spectroscopy. We used multiplexed Raman spectroscopy to analyze the age-related changes in 7 proteins, 3 lipids, and 8 advanced glycation/lipoxidation endproducts (AGEs/ALEs) in 63 postmortem human donors. We provided an important database for Raman spectra from a broad range of AGEs and ALEs, each with a characteristic fingerprint. Many of these adducts were shown for the first time in human Bruch's membrane and are significantly associated with aging. The study also introduced the previously unreported up-regulation of heme during aging of Bruch's membrane, which is associated with AGE/ALE formation. Selection of donors ranged from ages 32 to 92 yr. We demonstrated that Raman spectroscopy can identify and quantify age-related changes in a single nondestructive measurement, with potential to measure age-related changes in vivo. We present the first directly recorded evidence of the key role of heme in AGE/ALE formation.
Resumo:
N-linked glycosylation of proteins in eukaryotic cells follows a highly conserved pathway. The tetradecasaccharide substrate (Glc3Man9GlcNAc2) is first assembled at the membrane of the endoplasmic reticulum (ER) as a dolichylpyrophosphate (Dol-PP)-linked intermediate, and then transferred to nascent polypeptide chains in the lumen of the ER. The assembly of the oligosaccharide starts on the cytoplasmic side of the ER membrane with the synthesis of a Man5GlcNAc2-PP-Dol intermediate. This lipid-linked intermediate is then translocated across the membrane so that the oligosaccharides face the lumen of the ER, where the biosynthesis of Glc3Man9GlcNAc2-PP-Dol continues to completion. The fully assembled oligosaccharide is transferred to selected asparagine residues of target proteins. The transmembrane movement of lipid-linked Man5GlcNAc2 oligosaccharide is of fundamental importance in this biosynthetic pathway, and similar processes involving phospholipids and glycolipids are essential in all types of cells. The process is predicted to be catalysed by proteins, termed flippases, which to date have remained elusive. Here we provide evidence that yeast RFT1 encodes an evolutionarily conserved protein required for the translocation of Man5GlcNAc2-PP-Dol from the cytoplasmic to the lumenal leaflet of the ER membrane.
Resumo:
Pathogenic biotypes of Yersinia enterocolitica (serotypes O:3, O:8, O:9, and O:13), but not environmental biotypes (serotypes O:5, O:6, O:7,8, and O:7,8,13,19), increased their permeability to hydrophobic probes when they were grown at pH 5.5 or in EGTA-supplemented (Ca(2+)-restricted) media at 37 degrees C. A similar observation was also made when representative strains of serotypes O:8 and O:5 were tested after brief contact with human monocytes. The increase in permeability was independent of the virulence plasmid. The role of lipopolysaccharide (LPS) in this phenomenon was examined by using Y. enterocolitica serotype O:8. LPS aggregates of bacteria grown in acidic or EGTA-supplemented broth took up more N-phenylnaphthylamine than LPS aggregates of bacteria grown in standard broth and also showed a marked increase in acyl chain fluidity which correlated with permeability, as determined by measurements obtained in the presence of hydrophobic dyes. No significant changes in O-antigen polymerization were observed, but lipid A acylation changed depending on the growth conditions. In standard medium at 37 degrees C, there were hexa-, penta-, and tetraacyl lipid A forms, and the pentaacyl form was dominant. The amount of tetraacyl lipid A increased in EGTA-supplemented and acidic media, and hexaacyl lipid A almost disappeared under the latter conditions. Our results suggest that pathogenic Y. enterocolitica strains modulate lipid A acylation coordinately with expression of virulence proteins, thus reducing LPS packing and increasing outer membrane permeability. The changes in permeability, LPS acyl chain fluidity, and lipid A acylation in pathogenic Y. enterocolitica strains approximate the characteristics in Yersinia pseudotuberculosis and Yersinia pestis and suggest that there is a common outer membrane pattern associated with pathogenicity.
Resumo:
AIMS: The effect of dietary sucrose on insulin resistance and the pathogenesis of diabetes and vascular disease is unclear. We assessed the effect of 5% versus 15% sucrose intakes as part of a weight maintaining, eucaloric diet in overweight/obese subjects.
METHODS: Thirteen subjects took part in a randomised controlled crossover study (M:F 9:4, median age 46 years, range 37-56 years, BMI 31.7±0.9 kg/m(2)). Subjects completed two 6 week dietary periods separated by 4 week washout. Diets were designed to have identical macronutrient profile. Insulin action was assessed using a two-step hyperinsulinaemic euglycaemic clamp; glucose tolerance, vascular compliance, body composition and lipid profiles were also assessed.
RESULTS: There was no change in weight or body composition between diets. There was no difference in peripheral glucose utilization or suppression of endogenous glucose production. Fasting glucose was significantly lower after the 5% diet. There was no demonstrated effect on lipid profiles, blood pressure or vascular compliance.
CONCLUSION: A low-sucrose diet had no beneficial effect on insulin resistance as measured by the euglycaemic glucose clamp. However, reductions in fasting glucose, one hour insulin and insulin area under the curve with the low sucrose diet on glucose tolerance testing may indicate a beneficial effect and further work is required to determine if this is the case. Clinical Trial Registration number ISRCTN50808730.
Resumo:
Phosphatidylcholine (PC), sphingomyelin (SM) and cholesterol (CHOL) are major constituents of mammalian cell membranes. DPPC/CHOL and DPPC/DMPC are well-known binary mixtures. POPC/CHOL, DOPC/CHOL, egg-SM/CHOL, egg-SM/POPC and egg-SM/DOPC are less studied, but also important for the comprehension of the POPC/egg-SM/CHOL mixtures. These provide complex media for which polarity is hard to access. It is mainly determined by the water penetrating the bilayer (unevenly distributed creating a polarity gradient), though the influence of the dipoles from phospholipids (e.g. –PO, –CO, –OH) and the double bond in the steroid ring of CHOL cannot be neglected. CHOL derivatives are an interesting tool to verify the influence of the double bonds in the polarization of its surroundings. Pyrene fluorescence was used to access an equivalent polarity (associated to the dielectric constant) near the lipid/water interface of lipid bilayers. POPC/CHOL and DOPC/CHOL have similar thermal behavior and variation with CHOL content, though for lower CHOL content the equivalent polarity is higher for the DOPC/CHOL mixtures. The studies with DPPC and DMPC showed that pyrene does not seem to have a marked preference for either ordered or disordered phases. For DPPC/CHOL and egg-SM/CHOL the highlight goes to the behavior of the mixtures at higher CHOL amounts, where there is a substantial change in the thermal behavior and polarity values especially for the egg-SM/CHOL mixture. Egg-SM/POPC and egg-SM/DOPC show different behavior depending on which phospholipid has a higher molar proportion. The ternary mixtures analyzed do not exhibit significant differences, though there is the indication of the existence of a more ordered environment at lower temperatures and a less ordered environment for higher temperatures. The presence of 7DHC or DCHOL in egg-SM bilayers showed a tendency for the same behavior detected upon mixing higher amounts of CHOL.
Resumo:
The latent membrane protein 1 (LMP1) encoded by the Epstein-Barr virus acts like a constitutively activated receptor of the tumor necrosis factor receptor (TNFR) family and is enriched in lipid rafts. We showed that LMP1 is targeted to lipid rafts in transfected HEK 293 cells, and that the endogenous TNFR-associated factor 3 binds LMP1 and is recruited to lipid rafts upon LMP1 expression. An LMP1 mutant lacking the C-terminal 55 amino acids (Cdelta55) behaves like the wild-type (WT) LMP1 with respect to membrane localization. In contrast, a mutant with a deletion of the 25 N-terminal residues (Ndelta25) does not concentrate in lipid rafts but still binds TRAF3, demonstrating that cell localization of LMP1 was not crucial for TRAF3 localization. Moreover, Ndelta25 inhibited WT LMP1-mediated induction of the transcription factors NF-kappaB and AP-1. Morphological data indicate that Ndelta25 hampers WT LMP1 plasma membrane localization, thus blocking LMP1 function.