980 resultados para MQW (multiple quantum wells)
Resumo:
Polaron cyclotron resonance (CR) has been studied in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well structures in magnetic field up to 30 T. Large avoided-level-crossing splittings of the CR near the GaAs reststrahlen region, and smaller splittings in the region of the AlAs-like optical phonons of th AlGaAs barriers, are observed. Based on a comparison with a detailed theoretical calculation, the high frequency splitting, the magnitude of which increases with decreasing well width, is assigned to resonant polaron interactions with AlAs-like interface phonons.
Resumo:
High-quality compressively strained In0.63Ga0.37As/InP quantum wells with different well widths (1-11 nm) have been grown coherently on InP substrates using a home-made gas source molecular beam epitaxy (GSMBE) system. The indium composition in the wells of the sample was determined by means of high-resolution X-ray diffraction and its computer simulation. it is found that the exciton transition energies determined by photoluminescence (PL) at 10 K are in good agreement with those calculated using a deformation potential model. Sharp and intense peaks for each well can be well resolved in the 10 K PL spectra. For wells narrower than 4 nm, the line width of the PL peaks are smaller than the theoretical values of the line-width broadening due to 1 hit interface fluctuation, showing that the interface fluctuation of our sample is within 1 ML. For wells of 7 and 9 nm, the PL peak widths are as low as 4.5 meV.
Resumo:
The chemical adsorption of sodium sulphide, ferrocene, hydroquinone and p-methyl-nitrobenzene onto the surface of a GaAs/AlxGa1-xAs multiquantum well semiconductor was characterized by steady state and time-resolved photoluminescence (PL) spectroscopy. The changes in the PL response, including the red shift of the emission peak of the exciton in the quantum well and the enhancement of the PL intensity, are discussed in terms of the interactions of the adsorbed molecules with surface states.
Resumo:
Subband separation energy dependence of intersubband relaxation time in a wide quantum well (250 Angstrom) was studied by steady-state and time-resolved photoluminescence. By applying a perpendicular electrical field, the subband separation energy in the quantum well is continuously tuned from 21 to 40 meV. As a result, it is found that the intersubband relaxation time undergoes a drastic change from several hundred picoseconds to subpicoseconds. It is also found that the intersubband relaxation has already become very fast before the energy separation really reaches one optical phonon energy. (C) 1997 American Institute of Physics.
Resumo:
We have measured low-temperature photoluminescence (PL) and optical absorption spectra of an In0.2Ga0.8As/GaAs multiple quantum well (MQW) structure at pressures up to 8 GPa. Below 4.9 GPa, PL shows only the emission of the n = 1 heavy-hole (HH) exciton. Three new X-related PL bands appear at higher pressures. They are assigned to spatially indirect (type-II) and direct (type-I) transitions from X(Z) states in GaAs and X(XY) valleys of InGaAs, respectively, to the HH subband of the wells. From the PL data we obtain a valence band offset of 80 meV for the strained In0.2Ga0.8As/GaAs MQW system. Absorption spectra show three features corresponding to direct exciton transitions in the quantum wells. In the pressure range of 4.5 to 5.5 GPa an additional pronounced feature is apparent in absorption, which is attributed to the pseudo-direct transition between a HH subband and the folded X(Z) states of the wells. This gives the first clear evidence for an enhanced strength of indirect optical transitions due to the breakdown of translational invariance at the heterointerfaces in MQWs.
Resumo:
The valence hole subbands, TE and TM mode optical gains, transparency carrier density, and radiative current density of the zinc-blende GaN/Ga0.85Al0.15N strained quantum well (100 Angstrom well width) have been investigated using a 6 X 6 Hamiltonian model including the heavy hole, Light hole, and spin-orbit split-off bands. At the k = 0 point, it is found that the light hole strongly couples with the spin-orbit split-off hole, resulting in the so+lh hybrid states. The heavy hole does not couple with the light hole and the spin-orbit split-off hole. Optical transitions between the valence subbands and the conduction subbands obey the Delta n=0 selection rule. At the k not equal 0 points, there is strong band mixing among the heavy hole, light hole, and spin-orbit split-off hole. The optical transitions do not obey the Delta n=0 selection rule. The compressive strain in the GaN well region increases the energy separation between the so1+lh1 energy level and the hh1 energy level. Consequently, the compressive strain enhances the TE mode optical gain, and strongly depresses the TM mode optical gain. Even when the carrier density is as large as 10(19) cm(-3), there is no positive TM mode optical gain. The TE mode optical gain spectrum has a peak at around 3.26 eV. The transparency carrier density is 6.5 X 10(18) cm(-3), which is larger than that of GaAs quantum well. The compressive strain overall reduces the transparency carrier density. The J(rad) is 0.53 kA/cm(2) for the zero optical gain. The results obtained in this work will be useful in designing quantum well GaN laser diodes and detectors. (C) 1996 American Institute of Physics.
Resumo:
Using a home-made gas-source molecular beam epitaxy system, high quality InGaAs quantum wells with different well widths lattice-matched to a (001) InP substrate have been obtained. Sharp and intense peaks for each well can be well resolved in the PL spectra for the sample. For well widths larger than similar to 60 Angstrom, the exciton energies are in good agreement with those of calculation. For wells narrower than 40 Angstrom, our line widths are below the theoretical values of line width broadening due to one monolayer interface fluctuation, showing that the interface fluctuation of our sample is within one monolayer.
Resumo:
The electronic structures of the zinc-blende GaN/Ga0.85Al0.15N compressively strained superlattices and quantum wells are investigated using a 6 x 6 Hamiltonian model (including the heavy hole, light hole and spin-orbit splitting band). The energy bands, wavefunctions and optical transition matrix elements are calculated. It is found that the light hole couples with the spin-orbit splitting state even at the k=0 point, resulting in the hybrid states. The heavy hole remains a pure heavy hole state at k=0. The optical transitions from the hybrid valence states to the conduction states are determined by the transitions of the light hole and spin-orbit splitting states to the conduction states. The transitions from the heavy hole, light hole and spin-orbit splitting states to the conduction states obey the selection rule Delta n=0. The band structures obtained in this work will be valuable in designing GaN/GaAlN based optoelectronic devices. (C) 1996 Academic Press Limited